
ACM 122: Mathematical Optimization

Lecture Notes

Lecturer: Venkat Chandrasekaran, Author: Massimiliano de Sa

Contents

1 Lecture 1: Introduction to Optimization 2

2 Lecture 2: Certifying Optimality 4

3 Lecture 3: Convex Sets and Hyperplanes 7

4 Lecture 4: Convex Functions 12

5 Lecture 5: Fenchel Duality I 16

6 Lecture 6: Fenchel Duality II 20

7 Lecture 7: Describing Convex Sets 26

8 Lecture 8: Cone Programming 32

9 Lecture 9: Conic Duality 34

10 Lecture 10: Linear & Semidefinite Programs 39

11 Lecture 11: Lagrange Duality I 43

12 Lecture 12: Lagrange Duality II 47

13 Lecture 13: Optimality Conditions for NLPs 50

14 Lecture 14: Lagrangian Relaxation 54

15 Lecture 15: Mixed Integer Programs I 57

16 Lecture 16: Mixed Integer Programs II 61

17 Lecture 17: Numerical Methods I 64

18 Lecture 18: Numerical Methods II 68

1

1 Lecture 1: Introduction to Optimization

Broadly, we define optimization as the discipline concerned with identifying the
“best” element according to some criterion from a collection of possible choices.
More concretely, we describe optimization as the following: over all x ∈ G, we
wish to minimize f(x) subject to x belonging to some constrain set S.
Here, G is known as the ground set, f : G → R is known as the objective
function, and S ⊂ G is known as the constraint set. S consists of all possible
choices of x.
Now, we consider some common classes of optimization problems.

1. Continuous Optimization: First, we consider the ground set G = Ed,
d dimensional Euclidean space. This class of optimization problems is
called the set of continuous optimization problems. The style of analysis
used in this area is mainly real analysis.

2. Integer Programming: Next, we consider G = Zd, the set of d di-
mensional integers. This class of problems is called integer programming.
The math used in this are mainly comes from number theory and abstract
algebra.

3. Combinatorial Optimization: G can also be the set of all graphs on d
nodes. This family is called combinatorial optimization. The math used
in this field mainly relies on ideas from combinatorics, graph theory, and
other areas of discrete math.

4. Calculus of Variations: Finally, we consider the set G of all continuous
functions from [0, 1] to [0, 1]. This ground set is infinite dimensional. The
family of problems associated with this ground set is called calculus of
variations, and relies on functional analysis.

In this course, we’ll mainly focus on the case of continuous optimization, but
will see applications to integer programming and combinatorial optimization.
The examples of d dimensional Euclidean space that we’ll commonly encounter
are the following:

1. Rd, the set of vectors of length d with real entries. The inner product
associated with this space is the dot product:

⟨x, y⟩ =
d∑

i=1

xiyi (1)

2. Rm×n, the set of m × n matrices with real entries. The associated inner
product on this space is the trace inner product:

⟨X,Y ⟩ = tr(X∗Y) (2)

This space is m · n dimensional.

2

3. Sn, the set of n× n symmetric matrices with real entries. The associated
inner product is once again the trace inner product:

⟨X,Y ⟩ = tr(X∗Y) = tr(XY) (3)

This space has dimension n(n+ 1)/2, or “n choose 2,” in other words.
The dimension of this space may be calculated from a symmetry argument.
We know there are n elements on the diagonal of X ∈ Sn and the same
number of elements p above and below the diagonal. Thus:

2p+ n = n2 (4)

p = n(n− 1)/2 (5)

The total number of “free” elements in X ∈ Sn is therefore:

p+ n = n(n+ 1)/2 (6)

This defines the dimension of the space.

Now, we discuss the general form of a continuous optimization problem. For-
mally, a continuous optimization problem is described:

v = inf
x∈Ed

f(x) (7)

s.t. x ∈ S (8)

Here, f : Ed → R is the objective function. Its domain, dom(f), can be a
proper subset of Ed. Note that the constraint set S is not necessarily a subset
of dom(f) - it’s possible that there is no intersection at all between the two!
They are formulated entirely separately.
On the second line of this problem, s.t. x ∈ S, we specify that the optimization
problem is “subject to” the constraint that x ∈ S ⊂ Ed. The s.t. can also be
thought of as meaning “such that.”
An element of S ∩ dom(f) is known as a feasible point, or feasible solution,
of the optimization problem. This is because it is in the constraint set and the
domain of f .
v is called the optimal value, and is defined:

v = inf{f(x)|x ∈ dom(f) ∩ S} (9)

Here, inf denotes infimum, the largest lower bound of a given subset of R. Note
that we always take R to be the codomain of f , as R has a natural ordering of
elements that many other spaces do not.
Note that here, we allow −∞ to be the infimum of a set in the case that the set
is not bounded below. Additionally, recall that inf S is not necessarily contained
in S.
For instance, consider the problem:

inf
x∈R

exp(x) (10)

3

The minimum doesn’t exist in this case, but the infimum does! The solution to
this problem is thus v = 0. Remember - for any given subset of R, the infimum
will always exist.
A feasible point x̂ ∈ dom(f) ∩ S for which f(x̂) = v is called an optimal
solution of the problem. This is any point x̂ which achieves the optimal value.
Note that the optimal solution might not always exist, even when the optimal
value might! In the case of expx above, for instance, the optimal value v = 0
exists but an optimal solution does not.
We now provide some more remarks regarding this structure of problem. A
problem in which dom(f) ∩ S = Ed is called unconstrained, while a problem
in which dom(f) ∩ S = ∅ is called infeasible.
In the case of infeasibility, we take v = +∞ by convention! To reason about this
from an intuitive perspective, we can imagine the solution to all optimization
problems “starting at” +∞, and the process of finding an optimal value as
“pushing the solution down” from ∞. In the case of infeasibility, we cannot
“push the solution down,” so it remains at∞. Mathematically, this corresponds
to saying inf ∅ = +∞.
If v = −∞, on the other hand, the problem is said to be unbounded below,
or simply unbounded. For example, consider:

inf
x∈R

x (11)

This problem is unbounded below. Note that by conventions from operations
research, the variable x is commonly referred to as the decision variable.
We conclude this lecture by asking a few questions. First - what does it mean to
solve an optimization problem? In particular, given a candidate solution, how
do we certify that the solution is optimal? We’d like to find some certificate
that tells us that the answer is correct.
Secondly, we want to know how to describe an optimization problem. We will
pick up with these questions in the next lecture.

2 Lecture 2: Certifying Optimality

Last time, we brought up two important questions in continuous optimization:
how do we certify optimality, and how do we describe optimization problems?
In this lecture, we’ll begin developing an answer to the first question, on certi-
fying optimality.
Our approach to certifying optimality will be to develop methods to certify
lower bounds on the optimal value of a problem. Consider the problem:

v = inf
x∈Ed

f(x) (12)

s.t. x ∈ S (13)

For f : Ed → R, dom(f) ⊂ Ed, S ⊂ Ed, suppose we’re given some γ that is
claimed to be a lower bound on v. How can we certify that γ is indeed a lower

4

bound on v?
Let’s see why the problem of certifying γ is a lower bound is still a hard problem.
Suppose we have a proposed lower bound γ and an optimal solution v. For γ to
be a lower bound on v, we require that f(x) ≥ γ∀x ∈ S! This ∀x ∈ S is what is
challenging - we need to somehow verify that γ is a lower bound for every value
of x.
As an exercise, imagine that we have a black box that tells us if γ is a lower
bound or not. How could we use this to our advantage? If we can find an x̂
that’s a lower bound on f(x) and satisfies f(x̂) ≤ f(x), then x̂ must give a
solution to our problem!
In particular, given x̂ ∈ S that is claimed to be an optimal solution, we could
try to certify that x̂ is optimal by setting γ = f(x̂) and appealing to our lower
bound certificate.1

As an illustration, consider the problem:

v = inf
x∈Ed

||x− b||2 (14)

s.t. x ∈ U (15)

Here, b ∈ Ed is fixed and U ⊂ Ed is a subspace. Geometrically, we know from
the orthogonality principle in linear algebra that the error between b and the
subspace U is orthogonal to U .
Let’s try to derive a lower bound on v, the optimal solution. As an easy lower
bound, we know:

v ≥ 0 (16)

This is because the square of a norm is always greater than or equal to zero.
However, this lower bound doesn’t use any information about the constraint set
or the geometry of the problem! This makes v ≥ 0 a weak certificate - it’s a
loose lower bound that doesn’t allow us to say much about the solution to the
problem. Mathematically, all it tells us is that for all γ ≤ 0, we can certify that
γ is a lower bound on v.
Let’s derive a stronger certificate. Remember - our goal is to develop a lower
bound with no reliance on x - this will enable us to form a bound that holds for
all x. Fix any µ ∈ U⊥, the orthogonal complement of U in Ed. Then:

||x− b||2 = ||x− b+ µ||2 + ||x− b||2 − ||x− b+ µ||2 (17)

= ||x− b+ µ||2 + [||x− b||2 − (||x− b||2 + ||µ||2 + 2 ⟨x− b, µ⟩)] (18)

= ||x− b+ µ||2 − 2 ⟨x, µ⟩+ 2 ⟨b, µ⟩ − ||µ||2 (19)

Where we use the “completing the square” identity to get to line 2. So far, we
still haven’t used any geometric properties of the problem! Let’s use these to
get rid of the terms involving x.

1Notice that this method will only apply when an optimal solution to the problem exists.

5

We know that ||x − b + µ||2 ≥ 0 and ⟨x, µ⟩ = 0, since x ∈ U by the constraint
on the problem and µ ∈ U⊥ by definition. This forms the inequality:

||x− b||2 ≥ 2 ⟨b, µ⟩ − ||µ||2 (20)

We now have a lower bound that doesn’t depend on x! It therefore holds for all
x ∈ U . This is a stronger lower bound than v ≥ 0. We can see this by setting
µ = 0 as a simple example. In this case, 2 ⟨b, µ⟩ − ||µ||2 = 0, which tells us that
our new lower bound is at least as good as our old lower bound.
If some γ is claimed to be a lower bound on v, one way to certify it is a lower
bound is to identify a µ ∈ U⊥ such that:

2 ⟨b, µ⟩ − ||µ||2 ≥ γ (21)

Recall that for every fixed µ, this expression gives a lower bound on v! This is
what allows us to conclude the statement above.
Now, we want to somehow maximize this lower bound on v! This will take us to-
wards a solution. This technique won’t give us a solution for every optimization
problem, but will in this special case! This is because this family of certificates
for this problem is very good.
Let’s recap what we’ve covered so far. So far, we’ve seen:

1. Different lower bound certification techniques may very in their certifica-
tion capabilities.

2. To produce a certifiable lower bound, we changed a statement involving a
universal quantifier, ∀x ∈ U, ||x − b|| ≥ γ, to one involving an existential
quantifier:

∃µ ∈ U⊥ s.t. 2 ⟨b, µ⟩ − ||µ||2 ≥ γ (22)

This has simplified the problem.

If we are given a γ, and find a µ such that 2 ⟨b, µ⟩ − ||µ||2 ≥ γ, then we know
that γ is a lower bound! It’s important to remember here that the existence of
a certificate is not the same as the computation of a certificate. Here, we only
care that the certificate “does the job” of verifying a lower bound - we don’t
care about the details of computing µ.
Consider the following question about the problem above. Can any lower bound
on v be certified using µ ∈ U⊥? If we can find an x ∈ U and a µ ∈ U⊥ such
that ||x − b + µ||2 = 0 and 2 ⟨x, µ⟩ = 0, then our lower bound 2 ⟨b, µ⟩ − ||µ||2
will be exact, as in this case:

||x− b||2 = ||x− b+ µ||2 − 2 ⟨x, µ⟩+ 2 ⟨b, µ⟩ − ||µ||2 (23)

= 2 ⟨b, µ⟩ − ||µ||2 (24)

This exact lower bound will therefore give us a solution to the problem, as it
is less than or equal to f(x)∀x ∈ Ed and is an actual value of the objective

6

function.
Let’s find such an x and µ and solve the optimization. We know from linear
algebra that v = ||PU⊥(b)||2, the orthogonal projection of b onto U⊥ should be
the solution to the problem. Is there a µ for which we can certify this v is a
lower bound? Consider µ = PU⊥(b).

2 ⟨b, µ⟩ − ||µ||2 = 2 ⟨b, PU⊥(b)⟩ − ||PU⊥(b)||2 (25)

= 2||PU⊥(b)||2 − ||PU⊥(b)||2 = v (26)

Thus, such a µ exists! Therefore, v is a lower bound of the optimization problem.
Since an x exists such that v = f(x), v must be the solution of the problem.
Going beyond this simple problem, how do we think about certificates for lower
bounds more generally? To make progress on this question, we’ll reformulate
the problem of certifying lower bounds to certifying infeasibility.
Specifically, for a problem:

v = inf
x∈Ed

f(x) (27)

s.t. x ∈ S (28)

For f(x) : Ed → R with domain dom(f). For S ⊂ Ed, we have the equivalence:

f(x) ≥ γ ∀x ∈ S ∩ dom(f)⇔ {x ∈ Ed|f(x) < γ, x ∈ dom(f) ∩ S} = ∅ (29)

In other words, γ is a lower bound over all feasible points if and only if {x ∈
Ed|f(x) < γ, x ∈ dom(f) ∩ S} = ∅. Now, we must discuss how to actually
certify that this set is empty!
As an example, consider the set {x ∈ Ed|Ax = b}, where A : Ed → En is a
linear map and b ∈ En. To show that the set is empty, we can use Fredholm’s
alternative, which states the following.

Proposition 1 Fredholm’s Alternative
For a linear map A : Ed → En and b ∈ En, exactly one of the following is true:

1. There exists x ∈ Ed such that Ax = b.

2. There exists µ ∈ En such that A∗µ = 0 and ⟨b, µ⟩ = 1.

This allows us to conclude emptiness with the following: if µ ∈ En such that
A∗µ = 0 and ⟨b, µ⟩ = 1, then there is no x such that Ax = b. By showing such
a µ exists, we may conclude emptiness. This defines a certificate.

3 Lecture 3: Convex Sets and Hyperplanes

In this lecture, we’ll begin by understanding what’s actually going on, geomet-
rically speaking, with Fredholm’s alternative. First, we review what Fredholm’s

7

alternative states.
Given a linear map A : Ed → En and b ∈ En:

{x ∈ Ed|Ax = b} = ∅ (30)

If and only if ∃µ ∈ En such that A∗µ = 0 and ⟨b, µ⟩ = 1.
How can we geometrically understand what’s happening in this scenario? Fred-
holm’s alternative states that when the set is empty, the vector b doesn’t lie in
the image of A. Where does µ come into this?
The vector µ provides a geometric certificate of the fact that the image of A
is separate from the vector b, since we know µ is orthogonal to the image of A
(from A∗µ = 0) and that ⟨µ, b⟩ = 1.
Consider the following set, called a hyperplane, which allows us to interpret this
geometric property further.

H = {y ∈ En| ⟨µ, y⟩ = 1/2} (31)

This set, which has dimension n − 1, separates the vector b from the image of
A. Since ⟨µ, y⟩ = 1/2 and ⟨µ, b⟩ = 1, we can visualize H as a plane with normal
vector µ, located halfway between b and the image of A.
What does this hyperplane accomplish in a geometric sense? We know that
image(A) lies on one side of the hyperplane, and b lies on the other side of the
hyperplane. We can think about this property mathematically as follows:

image(A) ⊂ {y ∈ En| ⟨µ, y⟩ < 1/2} (32)

{b} ⊂ {y ∈ En| ⟨µ, y⟩ > 1/2} (33)

Through these two sets, we observe how the hyperplane H “splits up” space into
two pieces! These pieces don’t intersect, except for on the hyperplane itself.
This splitting allows us to gain a full appreciation for what Fredholm is actually
saying. Fredholm really says that ∃µ that is normal to some hyperplane H that
breaks space such that image(A) is in one half and b is in the other.
Let’s summarize the steps we took in interpreting Fredholm’s alternative. First,
to show that {x ∈ Ed|Ax = b} = ∅, we showed that:

image(A) ∩ {b} = ∅ (34)

We accomplished this by identifying a hyperplane that separates image(A) and
b.
This two-step process suggests a more general strategy for certifying that a given
set is empty! Let’s work out the steps of this strategy.
Suppose we’re given a set C ⊂ Ed that we’d like to certify is empty. We may
follow these two steps:

1. Identify C1, C2 ⊂ Ed such that C1 ∩ C2 = ∅ implies C = ∅.

2. Attempt to certify that C1 ∩ C2 = ∅ by identifying a hyperplane that
separates C1 and C2.

8

In summary, once we have two disjoint sets such that C1 ∩C2 = ∅ ⇒ C = ∅, we
want to find a way to certify that C1 ∩ C2 is indeed empty. A convenient way
to do this is by finding a hyperplane that separates the two sets.
As a brief aside, we ask the question - why use a hyperplane? In continu-
ous optimization, hyperplanes are particularly convenient because of their pa-
rameterization. Every hyperplane is characterized by a normal vector µ and
some “offset.” This simple parameterization makes it computationally simpler
to search over the space of hyperplanes to find one that separates our sets.
Thus far, we’ve only introduced hyperplanes in a somewhat informal manner.
Now, we formalize our terminiology.

Definition 1 Hyperplane
The set:

H = {z ∈ Ep| ⟨a, z⟩ = c} (35)

For a ∈ Ep\{0} and c ∈ R is called a hyperplane. The vector a is called the
normal vector and the scalar c is called the translate.

Notice that if c = 0, the hyperplane would pass through the origin instead of
having some nonzero offset from the origin. Associated with every hyperplane
is a set of spaces called the open and closed halfspaces.

Definition 2 Open Halfspaces
Let H be a hyperplane. The open halfspaces defined by H are the sets:

{z ∈ Ep| ⟨a, z⟩ < c} (36)

{z ∈ Ep| ⟨a, z⟩ > c} (37)

The word “open” in the name open halfspace refers to the far that the inequal-
ities in the set definition are strict.

Definition 3 Closed Halfspaces
Let H be a hyperplane. The closed halfspaces defined by H are the sets:

{z ∈ Ep| ⟨a, z⟩ ≤ c} (38)

{z ∈ Ep| ⟨a, z⟩ ≥ c} (39)

9

The closed halfspaces defined by a hyperplane are the exact same as open half-
spaces, only having ≤ and ≥ in the place of the strict inequalities < and >.
Using the language of halfspaces, we may more precisely state what it means
for a hyperplane H to “separate” two sets.

Definition 4 Hyperplane Separation
A hyperplane H separates two sets C1, C2 ⊂ Ep if C1 and C2 lie in opposite
closed halfspaces defined by H.

Thus, if C1 is contained in one halfspace defined by H and C2 is contained in
the other, H is said to separate C1 and C2.
After introducing these concepts formally, a few questions naturally arise. Namely:
given any two sets C1, C2 ⊂ En such that C1 ∩ C2 = ∅, is there a hyperplane
that separates C1 and C2?
We can come up with a few simple counterexamples to this question to see that
the answer is no! For instance, take C1 and C2 to be concentric circles of radii 1
and 2. These sets are disjoint, yet there is no hyperplane that separates them!
For what sets do separating hyperplanes always exist? Let’s think about a sce-
nario that might cause a problem for the existence of a hyperplane to answer
this question.
Let C1, C2 be disjoint sets in Ep, and let a, b ∈ C1. Now, consider the line
segment that connects a and b. If this line segment passes through the set C2,
then no separating hyperplane can exist between the two sets! This is where
the problem arises.
Mathematically, we can think about this problem as follows. Suppose we have a
hyperplane that separates space into two halfspaces. A line segment connecting
two points in one halfspace must remain on that side of the hyperplane! Thus,
we can think about this “line segment” condition as giving us what we need to
conclude the existence of a separating hyperplane.
Let’s describe the line segment condition more formally. What we want is for
the sets C1, C2 ⊂ Ep to be “closed under line segments” between pairs of points.
We now define a set that satisfies this “closed under line segments” condition.

Definition 5 Convex Set
A set C ⊂ Ep is called convex if x, y ∈ C implies:

λx+ (1− λ)y ∈ C ∀λ ∈ [0, 1] (40)

The expression λx + (1 − λ)y ∈ C, λ ∈ [0, 1] is called a convex combination
of x and y. Let’s think of a couple examples of convex and nonconvex sets.
An example of a convex set would be an open ball, as it is closed under line

10

segments. A nonconvex set would be a hollow ball.
Now, let’s think about some operations on convex sets that preserve convexity.

1. Let C ⊂ Ed and D ⊂ En be convex sets. Then, the Cartesian product of
C and D, defined:

C ×D = {(c, d)|c ∈ C, d ∈ D} (41)

Is a convex set.

2. Let {C(i)}i∈I be any family of sets where C(i) ⊂ Ed is convex. The
intersection: ⋂

i∈I
C(i) (42)

Is also convex in Ed. Note that the index set I can be finite, countable
infinite, or uncountably infinite! Note that a consequence of this result is
that the empty set ∅ is convex.

3. Let A : Ed → En be an affine map, and C ⊂ Ed be convex. Then, the
image of C under A, defined:

A(C) = {A(x)|x ∈ C} (43)

Is a convex set in En.

Now that we’ve established the definition and basic properties of a convex set,
we must think back to the relation between convexity and the existence of a
separating hyperplane.
Given two sets C1, C2 ⊂ Ep that are convex and disjoint, can we put a hyper-
plane between them? Interestingly, the answer to this question is yes, subject
to C1 and C2 belonging to opposite closed halfspaces. We formalize this idea in
the separation theorem.

Theorem 1 Separation Theorem
Let C1, C2 ⊂ Ep be convex sets such that C1 ∩ C2 = ∅. Then, there exists a
hyperplane:

H = {z ∈ Ep| ⟨a, z⟩ = c} (44)

With a ∈ Ep\{0} and c ∈ R such that C1 and C2 lie in the opposite closed
halfspaces defined by H. In particular:

inf
z(1)∈C1

⟨a, z(1)⟩ ≥ c ≥ sup
z(2)∈C2

⟨a, z(2)⟩ (45)

Where c is the translate of H.

11

Before we proceed, we make a few remarks on this theorem. First, note that
although C1 ∩ C2 = ∅ implies the existence of a separating hyperplane, the
reverse direction requires us to be a little bit more careful!
If a separating hyperplane exists, it’s not necessarily true that C1 and C2 are
disjoint. However, this is the case when one of C1, C2 belongs to an open
halfspace. This subtlety will be discussed in further detail when we apply this
theorem to optimization problems.
We now define two more common sets based on the definition of a hyperplane.

Definition 6 Polyhedron
A polyhedron is a finite intersection of closed halfspaces.

Definition 7 Cone
A set C ⊂ Ep that is closed under nonnegative scaling is called a cone. Mathe-
matically, if C is a cone:

x ∈ C ⇒ ax ∈ C ∀a ≥ 0 (46)

If C is also convex, C is called a convex cone.

Note that not every cone is convex! For instance, consider a common cone in
three dimensions. The set just composed of the surface of the cone is a cone
in the mathematical sense, but it not convex. The set composed of the surface
and interior of the cone, however, is convex, and thus forms a convex cone.

4 Lecture 4: Convex Functions

In today’s lecture, we will develop a method for determining if a function has
“convexity structure,” based on the notions of convexity we introduced last time.
Our main focus in this lecture will therefore be the study of convex functions.
We’ll make the transition from studying convex sets to convex functions through
developing a mapping between sets and functions! With this mapping, we’ll be
able to translate any ideas about convex sets into ideas about convex functions.

Definition 8 Epigraph of a Function
The epigraph of a function f : Ed → R with domain dom(f) is denoted epi(f),
and is defined as:

epi(f) = {(x, t) ∈ Ed × R|x ∈ dom(f), f(x) ≤ t} (47)

12

Intuitively, we can reason about the epigraph of a function as follows. It is the
set of all pairs of (x, t) values such that t is greater than f(x). This makes the
epigraph the set of all values “above” the graph of the function. Note that this
concept, by construction, is well-defined for any function.
The epigraph leads us nicely to the definition of a convex function.

Definition 9 Convex Function
A function f : Ed → R with domain dom(f) is called convex if epi(f) is a convex
subset of Ed × R.

Thus, we can conclude convexity of a function by looking at convexity of a set
associated with the function. Note that in our definition, we assume that our
functions are not able to achieve values of ±∞.
It’s important to note that convexity does not imply differentiability! Convex
functions, such as f(x) = |x|, x ∈ R, can have corners, and will not necessarily
be everywhere-differentiable.

Proposition 2 Inequality Characterization of Convexity
A function f : Ed → R with domain dom(f) is convex if and only if dom(f) ⊂ Ed

is convex and ∀x, y ∈ dom(f), we have that:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ [0, 1] (48)

This proposition provides us with an alternate way of characterizing the convex-
ity of functions. It states that if, for all x, y ∈ Ed, f(line segment connecting x, y)
is ≤ the line segment in R connecting f(x) and f(y), then the function is convex.
In R, we can visualize this as the line segment between two points on the func-
tion always being above the graph of the function in-between those two points.
It’s important to note that convexity is a global condition on a function, rather
than a local one! Additionally, we must have a convex domain in order to ap-
ply the definition of convexity to a function. Of further interest, note that the
convexity of a set implies that the set must be simply connected.
As with convexity of sets, there are a number of operations that preserve the
convexity of functions!

1. Let f1, f2 : Ed → R be convex functions with domains dom(f1) = dom(f2) =
Ed. For any scalars α1, α2 ≥ 0, the function:

f(x) = α1f1(x) + α2f2(x) (49)

Is a convex function with dom(f) = Ed.

13

2. Let g : Ed → R with dom(g) = Ed be a convex function and A : En → Ed

be an affine map. The function:

f(x) = g(A(x)) (50)

With domain dom(f) = En is a convex function.

3. Let {f (i)}i∈I be any collection of convex functions with f (i)Ed → R having
domain dom(f (i). The pointwise supremum, defined as:

f(x) = sup
i∈I

f (i)(x) (51)

With domain dom(f) =
⋂

i∈I dom(f (i) is a convex function. Note that this
property can be viewed as a parallel for convex functions of the intersection
property of convex sets. There are two methods to approach the proof of
this statement - by applying the inequality definition of convexity or by
applying the epigraph definition and using the intersection property of
convex sets.

Note that these observations also hold for more general convex functions. Us-
ing these properties, we can determine the convexity of more complex functions
using the convexity of simpler functions.
Let’s now turn our attention to differentiability. If f is differentiable, there are
a number of additional techniques we can make use of to analyze its convexity.
Differentiability generally gives us more refined conditions for determining the
convexity of functions.

Proposition 3 Convexity for Differentiable Functions
Let f : Ed → R be a function with domain dom(f) being open and f being
differentiable on dom(f). f is convex if and only if:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ ∀x, y ∈ dom(f) (52)

We may think about the proposed inequality more intuitively by fixing x and
checking that the inequality holds for all y ∈ dom(f). If we can accomplish this
for all x ∈ dom(f), we can conclude convexity of f .
Let’s think about the right hand side of the inequality. For each fixed x, we
know that:

f(x) + ⟨∇f(x), y − x⟩ (53)

Is an affine function of y. In particular, it gives the first order Taylor approxi-
mation of f at each point x! We can therefore think of this statement as saying:

14

if the graph of the function is above the tangent line to the function at each x,
then the function is convex.

Proposition 4 Hessian of a Convex Function Let f : Ed → R be a twice-
differentiable function with open domain dom(f). f is convex if and only if the
Hessian ∇2f satisfies:

∇2(f(x)) ⪰ 0 ∀x ∈ dom(f) (54)

For f is twice differentiable, recall that ∇2f is the symmetric matrix in Rd×d

filled with the partial derivatives of f . Because it is symmetric, talking about
its positive definiteness is something that makes sense.
Let’s come up with a geometric interpretation of this proposition. We know
that the Hessian tells us about the local curvature of the function, and appears
in the second order approximation of the function.
This condition tells us that the second order approximation of a convex function
must “curve upwards” at every point.
We are now ready to introduce the formulation of a general convex optimization
optimization problem. Depending on the source, each of the following types of
optimization problems are called convex. First:

v = inf
x∈Ed

f(x) (55)

s.t. x ∈ S (56)

For a convex function f : Ed → R and a convex set S ⊂ Ed. The other common
form of a convex optimization is:

v = inf
x∈Ed

f0(x) (57)

s.t. fi(x) ≤ 0, i = 1, ...k (58)

gj(x) = 0, j = 1, ...,m (59)

For convex functions f0, ..., fk : Ed → R and affine functions g1, ..., gm : Ed → R.
Note that the fi constraints are known as inequality constraints, while the
gj constraints are known as equality constraints.
Compared to the first formulation of a convex optimization problem, we have
simply elected to describe the constraint set more explicitly. Additionally, the
second formulation is more commonly used in the sub-field of continuous opti-
mization known as nonlinear programming. Note, however, that the two formu-
lations are identical.

15

5 Lecture 5: Fenchel Duality I

In this lecture, we will focus on deriving certificates based on separating hy-
perplanes. Additionally, we’ll come up with a “principled” way of “adding and
subtracting” to produce verifiable certificates on our optimization problems, just
as we did for the simple projection onto a subspace problem.
First, we’ll introduce some new terminology to formalize some concepts we’ve
discussed thus far. First, let’s discuss sets of certificates.
A family of certificates for deriving lower bounds on the optimal value of an
optimization problem is called a duality scheme. The problem of identifying
the “best” (largest) lower bound that can be obtained via a duality scheme is
called the dual problem associated with the given duality scheme. Note that
the dual problem is itself an optimization problem.
While this alternate lower bound optimization is called the dual problem, the
original optimization problem:

v = inf
x∈Ed

f(x) (60)

s.t. x ∈ S (61)

For which we wish to obtain certifiable lower bounds on the optimal value v, is
called the primal problem.
A duality scheme known as the Fenchel duality scheme is central to the study
of convex optimization. This approach was popularized by Rockafellar in his
text Convex Analysis. Let’s discuss the Fenchel duality scheme. Consider the
following primal optimization problem:

v = inf
x∈Ed

f(x) (62)

s.t. x ∈ S (63)

Here, f : Ed → R with domain dom(f) is the objective, and S ⊂ Ed is the
constraint set. For now, note that this problem is general, and need not be
convex.
The Fenchel duality scheme proceeds in two steps:

1. Certify that γ ≤ v ∈ R by certifying that:

epi(f − γ) ∩ S × (−∞, 0) = ∅ (64)

Note that here, we are focusing on two sets in d + 1 dimensions! The
dimension we focus on is therefore not the same as the dimension of the
original problem!

16

Thinking back to our earlier discussion of empty sets, it seems reasonable
that the process of certifying the intersection of two sets is empty can be
completed by finding a separating hyperplane. This takes us to step 2.

2. Certify that epi(f − γ) ∩ S × (−∞, 0) = ∅ by separating the sets using
a non-vertical hyperplane. In the context of multiple dimensions, a non-
vertical hyperplane is a hyperplane that is not parallel to the d+1’st axis.
Note that this hyperplane will not always exist! We can only apply this
procedure for certain types of optimization problems.

Notice that the first step of the Fenchel duality scheme is simply to reformulate
the optimization problem at hand, and that the second step - finding a sepa-
rating hyperplane - is where we actually do all of the work. Also of importance
is that the Fenchel duality scheme only provides us with a method of certifying
optimal values, not optimal solutions!
Let’s reframe the Fenchel duality problem in a more theoretical light. Formally,
we wish to identify a tuple (λ, η, δ) ∈ Ed × R× R such that:

epi(f − γ) ⊆ {(x, t) ∈ Ed × R| ⟨(λ, η), (x, t)⟩ ≤ δ} (65)

S × (−∞, 0) ⊆ {(x, t) ∈ Ed × R| ⟨(λ, η), (x, t)⟩ > δ} (66)

Where η ̸= 0 to enforce that the hyperplane defined by the normal vector (λ, η)
is not parallel to the d + 1’st axis of Ed+1. The two constraints above are
the same as saying that epi(f − γ) and S × (−∞, 0) lie on opposite sides of a
hyperplane! Note that one halfspace is closed and the other is open to avoid
intersections between the two sets.
The Fenchel dual optimization problem may now be written as the following:

v∗ = sup
λ∈Ed,η,δ,γ∈R

γ (67)

s.t. epi(f − γ) ⊆ {(x, t) ∈ Ed × R| ⟨(λ, η), (x, t)⟩ ≤ δ} (68)

S × (−∞, 0) ⊆ {(x, t) ∈ Ed × R| ⟨(λ, η), (x, t)⟩ > δ} (69)

17

Thus, we want to find the largest amount, γ, that we can “push the function
down” such that the epigraph of f − γ has no intersection with S × (∞, 0).
Notice that we do not see x, t as decision variables in this problem, as we want
our lower bound on the optimal value of the primal problem to be global, rather
than hold for a single value of x.
Let’s examine this optimization problem in greater detail. Suppose we have a
(λ, η, δ) tuple that satisfies the constraints on the dual problem. Looking at the
form of the constraints, we notice that any positive scaling of (λ, η, δ) will still
satisfy the constraints! What does this tell us about the possible values of η?
If (λ̃, η̃, δ̃) is feasible for the Fenchel dual problem, then so is any positive scaling
of the three! Thus, we can set η = ±1 without loss of generality.
Let’s first consider the case of η = 1, and see how this interacts with the
constraints. In S × (−∞, 0), we know that t can be arbitrarily small. if η = 1,
will we ever get a δ such that ⟨(λ, η), (x, t)⟩ > δ? Since t can be arbitrarily
small, we cannot get such a δ. For η = 1, the same problem happens for the
other constraint set.
We can also visualize this with the following graphic:

In the above, we see that as we increase γ, such that epi(f−γ) and S× (−∞, 0)
get closer together, the only separating hyperplane that has epi(f − γ) in the
negative halfspace (... ≤ δ)and S × (−∞, 0) in the positive halfspace (... > δ),
requires that η points downwards. This tells us that η cannot equal +1 and
separate the two spaces as we raise γ, as the hyperplane normal vector must
point down.
Thus, the two halfspace constraints tell us that η = −1. This gives us the

18

following simplification to the Fenchel dual problem:

v∗F = sup
λ∈Ed,δ,γ∈R

γ (70)

s.t. epi(f − γ) ⊆ {(x, t) ∈ Ed × R| ⟨λ, x⟩ − t ≤ δ} (71)

S × (−∞, 0) ⊆ {(x, t) ∈ Ed × R| ⟨λ, x⟩ − t > δ} (72)

Note that we have added a subscript F to the optimal solution to the Fenchel
dual. Before we continue, it’s important to make a few remarks regarding the
dual problem. Note that we will always have that:

v∗F ≤ v (73)

Where v is the solution to the primal problem. This is a fact that holds true
for any duality scheme, not just Fenchel! Schemes with this inequality are said
to exhibit weak duality.
For a given primal problem, if the associated Fenchel dual problem satisfies
v∗F = v, then the Fenchel dual is said to exhibit strong duality. Under what
conditions will the Fenchel dual exhibit this type of behavior?

Theorem 2 Strong Duality of the Fenchel Duality Scheme
Consider a primal optimization problem:

v = inf
x∈Ed

f(x) (74)

s.t. x ∈ S (75)

With f : Ed → R having domain dom(f) ⊂ Ed and constraint set S ⊂ Ed.
Suppose we have that:

1. f is convex

2. S is convex

3. int(dom(f)) ∩ S ̸= ∅

The, the Fenchel dual problem is a strong dual, i.e. v∗F = v. Moreover, there
exists an optimal solution of the Fenchel dual problem.

This tells us that if the three conditions specified above are satisfied, the sup
in the statement of the Fenchel dual problem may be replaced with a max. It’s
also important to note that the dual may have an optimal solution even if the
primal doesn’t! A simple example of this is the primal problem infx∈Ed exp(x),
which is a convex problem with no optimal solution.

Proof: To prove this theorem, we must show there exists a hyperplane that

19

separates epi(f − v) and S × (−∞, 0). As epi(f − v) and S × (−∞, 0) are both
convex and have an empty intersection, we have by the separation theorem for
convex sets that ∃(λ, η) ∈ Ed × R/{0} and δ ∈ R such that:

epi(f − v) ⊆ {(x, t) ∈ Ed × R| ⟨(λ, η), (x, t)⟩ ≤ δ} (76)

S × (−∞, 0) ⊆ {(x, t) ∈ Ed × R| ⟨(λ, η), (x, t)⟩ ≥ δ} (77)

Remember - the separation theorem just gives us closed halfspaces! We must
now show one of the inequalities in the halfspace sets above is strict and that
the hyperplane H from above is nonvertical.
First, we’ll prove the nonvertical property by showing that η ̸= 0. Suppose for
contradiction that η = 0. We must then have that λ ̸= 0, since it is required
that (λ, η) ̸= 0.
If η = 0, then the optimization constraint associated with the bottom set “ig-
nores t” and only deals with S! For the top set, if we “ignore t,” we just get
dom(f) as the possible values of X. Thus, we would require:

dom(f) ⊆ {x| ⟨λ, x⟩ ≤ δ} (78)

S ⊆ {x| ⟨λ, x⟩ ≥ δ} (79)

This tells us that dom(f) and S are in opposite closed halfspaces, which con-
tradicts our assumption:

int(dom(f)) ∩ S ̸= ∅ (80)

Thus, we conclude that η ̸= 0. This proves the first part!
Now, we turn our attention to establishing a strict inequality in one of the
hyperplanes. If η ̸= 0, we may go through the same λ, η, δ “scaling” reasoning
as before to establish that η = −1 without loss of generality. For η = −1:

epi(f − v) ⊆ {(x, t)| ⟨λ, x⟩ − t ≤ δ} (81)

S × (−∞, 0) ⊆ {(x, t)| ⟨λ, x⟩ − t ≥ δ} (82)

Now, as the second constraint holds for x ∈ S and t ∈ (−∞, 0), which is an
open interval, we can replace the closed halfspace in the second constraint with
an open halfspace:

S × (−∞, 0) ⊆ {(x, t)| ⟨λ, x⟩ − t > δ} (83)

From the fact that t strictly satisfies −∞ < t < 0. This completes the proof! □

6 Lecture 6: Fenchel Duality II

Today, we will derive a simplification of Fenchel dual problems. Our aim here
is to derive the Fenchel dual more easily.

20

First, we recall our problem setup. Consider the optimization:

v = inf
x∈Ed

f(x) (84)

s.t. x ∈ S (85)

Where f : Ed → R has domain dom(f) ⊂ Ed and constraint set S ⊂ Ed. Again,
we will start by assuming this problem is not necessarily convex.
Last time, we derived the Fenchel dual problem as follows:

v∗F = sup
λ∈Ed,δ,γ∈R

γ (86)

s.t. epi(f − γ) ⊂ {(x, t) ∈ Ed × R| ⟨λ, x⟩ − t ≤ δ} (87)

S × (−∞, 0) ⊂ {(x, t) ∈ Ed × R| ⟨λ, x⟩ − t > δ} (88)

Remember, there is no variable x in this optimization problem - this is an
important general feature of dual problems!
Let’s analyze each of the constraints. First, we examine:

epi(f − γ) ⊂ {(x, t) ∈ Ed × R| ⟨λ, x⟩ − t ≤ δ} (89)

Any (x, t) pair in the epigraph lies in this closed halfspace. Here, the “worst-
case” choice of t is the smallest value of t. This “worst case” idea tells us that
this constraint is equivalent to:

⟨λ, x⟩ − (f(x)− γ) ≤ δ ∀x ∈ dom(f) (90)

Where we substitute in f(x) − γ for our “worst-case” t value. This constraint
is equivalent to the following:

⟨λ, x⟩ − f(x) ≤ δ − γ ∀x ∈ dom(f) (91)

Since this inequality hold for all x, we conclude that the supremum over x of
the left hand side of the constraint must be less than or equal to δ − γ. For a
given λ, this supremum has a particular name.

Definition 10 Conjugate Function
Let f : Ed → R be any function with domain dom(f) ⊂ Ed. The conjugate of f
is denoted f∗, and is defined:

f∗(λ) = sup
x∈dom(f)

⟨λ, x⟩ − f(x) (92)

Here, f∗ : Ed → R and:

dom(f∗) = {λ ∈ Ed| sup
x∈dom(f)

⟨λ, x⟩ − f(x) <∞} (93)

21

Interestingly, this function is related to the Legendre transformation, which is
used in Hamiltonian dynamics.
Before we get into the properties of the conjugate function, let’s make note of
a couple of things about the definition.
First, we may rewrite f∗ in terms of the epigraph of f :

sup
x∈dom(f)

⟨λ, x⟩ − f(x) = sup
(x,t)∈epi(f)

⟨(λ,−1), (x, t)⟩ (94)

Rewriting the conjugate in this manner “lifts it up” a dimension. From this
alternate definition, we see that f∗ is a linear function in (x, t).
Importantly, we note that f∗ is convex function, even if f is not! Looking at
the function inside the supremum:

⟨λ, x⟩ − f(x) (95)

We notice that this function is affine in λ. When we take its supremum over
x, we’re essentially taking its “maximum” over a collection of affine functions.
Since the maximum of a set of convex functions is convex, f∗ is convex.
Now, we turn our attention back to the constraints on the Fenchel dual problem.
In terms of the conjugate function, the first constraint in the Fenchel dual states:

f∗(λ) ≤ δ − γ (96)

Now, we rewrite the second constraint, which says:

⟨λ, x⟩ > δ + t ∀x ∈ S, t ∈ (−∞, 0) (97)

This is the same as saying:

⟨−λ, x⟩ ≤ −δ ∀x ∈ S (98)

Now, we define another concept that will assist us in simplifying the Fenchel
dual.

Definition 11 Support Function
Let S ⊂ Ed be any set. The support function associated to S is denoted hs, and
is defined as:

hs(µ) = sup
x∈S
⟨µ, x⟩ (99)

Here, hs : Ed → R, and:

dom(hs) = {µ ∈ Ed| sup
x∈S
⟨µ, x⟩ <∞} (100)

22

Looking at this definition, we see that the Fenchel dual may be rewritten using
both conjugate and support functions.
Notice that hs is a convex function, even if S is a nonconvex set! In the definition
of hs, we are taking a supremum over a set of convex functions, and thus get a
convex function.
In terms of the support function, the second constraint of the Fenchel dual can
now be stated:

hs(−λ) ≤ −δ (101)

Putting all of these components together, the Fenchel dual problem can be
restated as:

v∗F = sup
λ∈Ed,δ,γ∈R

γ (102)

s.t. f∗(λ) ≤ δ − γ (103)

hs(−λ) ≤ −δ (104)

Eliminating γ, we then have that:

v∗F = sup
λ∈Ed,δ∈R

δ − f∗(λ) (105)

s.t. hs(−λ) ≤ δ (106)

We can now also eliminate δ from the problem. This gives us:

Definition 12 Fenchel Dual Simplification
The Fenchel dual of an optimization problem v = infx∈S f(x) may be written:

v∗F = sup
λ∈Ed

−f∗(λ)− hs(−λ) (107)

This final simplification has the advantage that we no longer need to rely on
hyperplanes to compute the Fenchel dual of a problem! This formulation allows
for a significantly simpler computation of the dual, and is convenient for deriving
Fenchel dual problems in practice. Notice that no matter what the original
primal problem is, the Fenchel dual problem is a convex optimization problem.
This reformulation also provides another interpretation of weak duality of the
Fenchel dual. Consider any x ∈ S ∩ dom(f). We have that:

f(x) = f(x)− ⟨λ, x⟩+ ⟨λ, x⟩ (108)

The firs two terms are ≥ f∗(λ), and the third term is ≥ −hs(−λ). So, −f∗(λ)−
hs(−λ) gives a lower bound on v for each fixed λ!

23

Now, let’s turn our attention back to the convex case. Consider a convex opti-
mization problem:

v = inf
x∈Ed

f(x) (109)

s.t. x ∈ S (110)

Here, f : Ed → R with domain dom(f) is a convex function and S is a convex set.
Further, suppose int(dom(f)) ∩ S ̸= ∅. We know that under these conditions,

the Fenchel dual exhibits strong duality and has an optimal solution for λ̂.
Now, suppose further that the primal problem has an optimal solution x̂. We
have that:

f(x̂) = f(x̂)− ⟨λ̂, x̂⟩+ ⟨λ̂, x̂⟩ (111)

≥ −f∗(λ̂)− hs(−λ̂) (112)

= v∗F (113)

Where in the last step, we use the optimality of λ̂. We know the under these
constraints v = v∗F , and that the inequality above is an equality.
As v∗F = f(x̂), we conclude the following two facts:

f∗(λ̂) = ⟨λ̂, x̂⟩ − f(x̂) (114)

hs(−λ̂) = ⟨−λ̂, x̂⟩ (115)

Let’s analyze each of these conditions. First:

⟨λ̂, x̂⟩ − f(x̂) ≥ ⟨λ, x⟩ − f(x) ∀x ∈ dom(f) (116)

Stated differently, we have that:

f(x) ≥ f(x̂) + ⟨λ̂, x− x̂⟩ x ∈ dom(f) (117)

This statement looks similar to the first order optimality conditions for f , where
instead of a λ, we had a gradient. The condition above allows us to use a
similar first order optimality condition to this but without the requirement of
differentiability!

Definition 13 Subdifferential
Let f : Ed → R be convex with int(dom(f)) ̸= ∅. For all x ∈ int(dom(f)) , the
subdifferential of f at x is denoted ∂f(x) and is defined as:

∂f(x) = {µ ∈ Ed|f(y) ≥ f(x) + ⟨µ, y − x⟩ ∀y ∈ dom(f)} (118)

The subdifferential is a generalization of the notion of “gradient” to arbitrary
convex functions. Note that convexity is required to apply this definition.

24

It’s important to note that for each fixed x, ∂f(x) gives a collection of µ satis-
fying the property above, not necessarily just a single µ!
At any differentiable point, however, this collection will only contain one ele-
ment, corresponding to the gradient line to the function at that point. Thus, if
f is differentiable at x:

∂f(x) = ∇f(x) (119)

At any non-differentiable point, we will not get this uniqueness.

Because of its close ties to the gradient, the subdifferential obeys many of the
standard rules for gradients. For instance:

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x) (120)

Where the + sign above denotes the Minkowski sum of sets.
Now, we state another definition, which together with the subdifferential will
help us describe convex optimization problems.

Definition 14 Normal Cone
Let S ⊂ Ed be a convex set. For any x ∈ S, the normal cone is denoted Ns(x)
and is defined as:

Ns(x) = {µ ∈ Ed| ⟨µ, y − x⟩ ≤ 0 ∀y ∈ S} (121)

From this definition, we observe that Ns(x) is the set of linear functionals that
attain their maximum over S at x.
Consider the following simple example:

25

From its definition, we notice that Ns(x) is a convex cone! Fixing x, y, we see
that Ns(x) provides a halfspace condition. For all y, we then get an intersection
of halfspaces:

⟨µ, y − x⟩ ≤ 0 ∀y ∈ S (122)

Now, we put this definition together to reach a conclusion above convex opti-
mization problems. In a convex optimization problem in which int(dom(f)) ∩
S ̸= ∅ for which x̂ is optimal, there exists a λ̂ such that λ̂ ∈ ∂f(x̂) and

−λ̂ ∈ Ns(x̂). Alternatively, we may express this as:

0 ∈ ∂f(x̂) +Ns(x̂) (123)

7 Lecture 7: Describing Convex Sets

Previously, we came up with an efficient description of the Fenchel dual, which
allowed us to compute the dual problem with relative ease. However, a key
issue that remains at this point in our development of optimization is that of
computation.
Just because convex problems have “nice” mathematical properties doesn’t mean
that we can tractably find an optimal solution. Furthermore, we might not have
a certificate of optimality that we can use to verify optimal solutions.
Let’s think about the challenging nature of convex optimization problems fur-
ther by thinking about the different representations of convex sets.
First, consider an arbitrary (not necessarily convex) optimization problem:

v = inf
x∈Ed

f(x) (124)

s.t. x ∈ S (125)

We will show that this problem, though arbitrary in nature, can be reformulated
as a convex optimization problem!
First, we’ll rewrite the problem with a linear objective function. We may write
the problem equivalently as:

v = inf
x∈Ed,t∈R

t (126)

s.t. (x, t) ∈ epi(f) (127)

x ∈ S (128)

Here, we introduce an additional variable, t, to reformulate the optimization
problem with a linear objective in d + 1 dimensions. This trick of changing
to a linear optimization over t using the epigraph is aptly called the “epigraph
trick.” Notice that we may rewrite the set of two constraints in this formulation
as the single optimization constraint:

(x, t) ∈ epi(f) ∩ S × R (129)

26

Next, we will rewrite this modified problem as an equivalent problem with a
convex constraint. Consider the following lemma.

Lemma 1 Recasting Problems with a Convex Constraint
Consider the following optimization problem with a linear objective function:

v = inf
z∈En

⟨c, z⟩ (130)

s.t. z ∈ T (131)

Here, T ⊂ En is a constraint set and c ∈ En defines a linear objective function.
We have that:

v = inf
z∈En

⟨c, z⟩ (132)

s.t. z ∈ conv(T) (133)

This lemma states that we may equivalently rewrite an optimization problem
with a constraint set T as an optimization problem with a constraint set of the
convex hull of T .

Proof: As T ⊂ conv(T), we have that:

inf
z∈En

⟨c, z⟩ s.t. z ∈ T (134)

Has a larger optimal value than the problem:

inf
z∈En

⟨c, z⟩ s.t. z ∈ conv(T) (135)

This gives us one direction of an inequality. We now show the other direction
of inequality holds to prove equality between the optimal values of the two
optimization problems.
In the other direction, consider any z ∈ conv(T). We have by the definition of
the convex hull that there exist z(1), ..., z(k) ∈ T and λ1, ..., λk ≥ 0 such that∑k

i=1 λi = 1 and:

z =

k∑
i=1

λiz
(i) (136)

We can then conclude that:

⟨c, z⟩ =
k∑

i=1

λi ⟨c, z(i)⟩ ≥ min
i
⟨c, z(i)⟩ (137)

27

So, this point in T has a smaller objective, even though T ⊂ conv(T). There-
fore:

inf
z∈Ed

⟨c, z⟩ s.t.z ∈ conv(T) (138)

Has a larger optimal value than the other. □

The key challenge with this convex reformulation in practice is that it is difficult
to compute convex hulls of arbitrary sets.
This challenge leads us to the following question: how can we derive “good”
ways to describe and represent convex sets? To describe any set, we some way
to identify whether a given point is an element of the set or not.
Our task is therefore the following: can we obtain or derive certificates of set
membership in the convex case? We’ve already seen that hyperplanes can be
used to certify that a point does not belong to a convex set - let’s see if we can
expand on this idea.
The external description of a convex set is used to certify that points are not
in a convex set. To begin with, consider a polyhedron:

S = {x ∈ Ed| ⟨a(i), x⟩ ≤ ci, i = 1, ..., k} (139)

This set is the intersection of finitely many halfspaces. Here, a(1), ..., a(k) ∈ Ed

and c1, ..., ck ∈ R.
So, with this description, certifying a point x /∈ S amounts to providing an
i ∈ {1, ..., k} such that:

⟨a(i), x⟩ > ci (140)

This inequality explicitly gives us a certificate that x is not in the set.
Let’s extend this procedure to arbitrary convex sets.

Proposition 5 Halfspace Representation of Convex Sets
Let S ⊂ Ed be a closed convex set. We have that:

S =
⋂
i∈I
{x ∈ Ed| ⟨a(i), x⟩ ≤ ci} (141)

With a(i) ∈ Ed and ci ∈ R for all i ∈ I, where I is a (potentially infinite) index
set.

Note that in this proposition, we require that the set is closed to ensure a set of
halfspaces will exist. For instance, consider the following example of a convex
but not closed set:

28

This set cannot be expressed as an intersection of halfspaces, as in the left half
of the plane, the axis is not included, while on the right half of the plane, the
axis is included. Requiring closure eliminates possibilities of this form.
Now, consider the following example, where we need an infinite number of half-
spaces to represent the closed ball:

Despite needing an infinite number of halfspaces, we can still apply the same
idea of external representation! All we need to do to show x /∈ S is provide an
i ∈ I such that:

⟨a(i), x⟩ > ci (142)

Let’s think more explicitly about how to represent this closed ball with halfs-
paces. The closed unit ball in Ed is the set:

S = {x ∈ Ed| ||x|| ≤ 1} (143)

Here, we have that:

S =
⋂

a∈Ed,||a||=1

{x ∈ Ed| ⟨a, x⟩ ≤ 1} (144)

This is a “halfspace way” of describing the Euclidean ball. To show that some
x /∈ S, we could use the halfspace corresponding to a = x/||x|| for verification!
This provides the same form of verification as checking that the length of x is
> 1, simply using halfspaces instead of explicitly checking the norm.
Now, we consider an internal description of convex sets. The internal de-
scription of a convex set is concerned with methods for verifying that a point is
a member of a convex set.

29

Consider the following basic idea. Let S be a convex set. To certify that some
x ∈ S, we could describe x as a convex combination of points that are known
to be in S. This suggests the idea of describng a convex set as a convex hull of
some collection of points we know to be in the convex set.
Consider the closed Euclidean ball, for example. Here, we could look at the
boundary of the ball, as the convex hull of the boundary will contain the inte-
rior of the ball.
This inspires the following question: for a convex set S, what is a “minimal”
collection of points in S whose convex hull equals S?

Definition 15 Extreme Point of a Convex Set
Let S ⊂ Ed be a convex set. A point x ∈ S is called an extreme point of S if x
cannot be expressed as a non-trivial convex combination of other points in S.

It’s important to note that the definition of an extreme point is one that only
applies to convex sets! Let’s think of a few simple examples to get a feel for
what the extreme points of convex sets might be.
First, consider the disk in the plane.

The extreme points of this set, as discussed earlier, are the set of boundary
points of the disk, highlighted above in red. Every point in the disk is a convex
combination of the points on the boundary, and no point on the boundary is a
convex combination of any other point.
Now, consider the box in the plane.

Here, the extreme points are the corners of the box.
At this point, it’s important to ask the following question: is any convex set
equal to the convex hull of its extreme points? In general, the answer to this

30

question is no! Consider the following counterexample, which represents the
first quadrant of the plane:

Although this set is convex, its only extreme point is the origin! Thus, we
cannot generate every point in this convex set with convex combinations of its
extreme points.
So, the application of the idea of extreme points seems to require that the set
in question be closed and bounded.

Theorem 3 Krein-Milman Theorem
Let S ⊂ Ed be a compact (closed and bounded) convex set. We have that S is
equal to the convex hull of its extreme points.

This theorem confirms our “closed and bounded” idea from above! Next, con-
sider the following theorem, which is often simply referred to as Caratheodory’s
theorem.

Theorem 4 Minkowski-Caratheodory Theorem
Let S ⊂ Ed be a compact convex set. Any x ∈ S can be expressed as a convex
combination of at most d+ 1 extreme points of S.

It’s important to note that in the theorem above, the collection of d+ 1 points
is not necessarily the same for all x ∈ S! A different collection of d + 1 points
could be used to represent each x ∈ S.
This theorem provides us with a certificate of membership for compact convex
sets! To certify x ∈ S, we could explicitly pick these d+ 1 points.
Next, we’d like to work with specific families of sets that we know everything
about, both internally and externally!
Once we know how to work with simple “primitives” that we have characterized
internally and externally, we may reach conclusions about more complex sets
by considering the intersections of these primitive sets. For instance, if we have
good descriptions of sets S1 and S2, then we can verify membership for S1 ∩ S2

by checking that the extreme point constraints are satisfied for both S1 and S2.

31

8 Lecture 8: Cone Programming

In this lecture, we’ll begin developing the structure of a common set of optimiza-
tion problems called cone programs. These types of optimization problems are
natural generalizations of another type of problem called a linear program.
First, we introduce the linear program. A linear program is an optimization
problem in which a linear function is optimized over a constraint set that is a
polyhedron.

v = inf
x∈Ed

⟨c, x⟩ (145)

s.t. ⟨a(i), x⟩+ bi ≥ 0, i = 1, ..., k (146)

This problem is a convex optimization problem, as it has a linear objective func-
tion and a convex constraint set.
The main constraint of a linear program relative to the general convex opti-
mization problem is that the constraint set is a polyhedron - a set composed of
a finite number of intersections of halfspaces.
For the general convex optimization problem, constraint sets may be written an
an infinite number of intersections of halfspaces - this is a much more challeng-
ing condition to work with than the finite case.
Cone programs generalize linear programs by considering more general types of
constraints. Specifically, let K ⊂ En be a convex cone. A cone program with
respect to K is an optimization problem of the form:

v = inf
x∈Ed

⟨c, x⟩ (147)

s.t.Ax+ b ∈ K (148)

Here, A : Ed → En is a linear map, b ∈ En, and c ∈ Ed. Notice that to obtain
the previous linear program as a special case of a general cone program, we let:

A =

− a(1)∗ −
...

− a(n)∗ −

 , b =

b1...
bn

 (149)

K = Rn
+ = {x ∈ Rn|xi ≥ 0, i = 1, ..., n} (150)

This cone, K = Rn
+, is called the non-negative orthant in Rn. Hence, a

linear program is a cone program with respect to the non-negative orthant.
Now that we’ve set up the general cone program framework, we ask - what is
the key source of complexity in cone programs? Does our cone have an efficient
internal or external description? For general convex cones, we need a way to
efficiently certify is a given point is in the cone or not. This ability will enable
us to more easily analyze cone programs.
For instance, let’s think about how we could certify inclusion of a point into the
non-negative orthant. To certify that some x /∈ K, we can use a hyperplane to
separate x from K.

32

On the other hand, to certify that some x ∈ K, we need an analogue of the
idea of an extreme point for cones! Unfortunately, the basic idea of an extreme
point is not one that translates well to cones, as typically, cones will only have
a single extreme point.
Consider the following definition, which generalizes the concept of an extreme
point to convex cones.

Definition 16 Extreme Ray
Let K ⊂ En be a convex cone. An extreme ray of K is a set:

{αu|α ≥ 0, u ∈ K/{0}} (151)

Such that no point in this set can be described in a convex combination of points
in K that lie outside of this set.

Let’s generate a few examples of extreme rays of convex cones. First, consider
the non-negative orthant K = Rn

+. Each set:

{αe(i)|α ≥ 0} (152)

Where e(i) is the i’th standard basis vector for Rn, is an extreme ray of Rn
+.

It’s important to note that this entire set is a ray. Some texts will refer to this
set as “the ray generated by e(i).”
As a second example, consider the Euclidean space Sm of m×m real symmetric
matrices equipped with the trace inner product. Let’s consider the set of positive
semidefinite matrices in Sm:

Sm+ = {x ∈ Sm|X ⪰ 0} (153)

This set forms a convex cone. Imagine we wanted to certify that some X /∈ Sm+ .
If X /∈ Sm+ , then there must exist u ∈ Rm such that:

u∗Xu < 0 (154)

Let’s rephrase this condition in terms of the inner product. If X /∈ Sm+ , then
there exists u ∈ Rm such that:

⟨uu∗, X⟩ < 0 (155)

Here, we may think of uu∗ as a rank one matrix that defines the normal of a
hyperplane! Remember - since Sd is a Euclidean space, separating hyperplanes
on Sm follow the same definitions as those on the more general space Ed!
To efficiently find such a u satisfying the condition above, we would need to
compute an eigendecomposition of X. Fortunately, this is a computationally
efficient process that may be done in polynomial time.

33

This gives us a method of certifying that X /∈ Sm+ - how could we instead
certify that X ∈ Sm+ ? To do this, we first need to characterize the extreme rays
of Sm+ .
The extreme rays of Sm+ are the sets:

{αuu∗|α ≥ 0, u ∈ Rn{0}} (156)

Now, we state a theorem regarding membership in convex cones.

Theorem 5 Krein-Milman/Minkowski-Caratheodory Theorem for
Convex Cones
Let K ⊂ En be a closed convex cone that is pointed (K ∩ −K = {0}). Any
element of K can be expressed as a convex combination of at most n elements
that lie in extreme rays of K.

Let’s consider a few examples of this theorem. First, for the non-negative or-
thant in Rn, we can express each point in Rn

+ using at most n extreme rays.
Secondly, for the PSD cone in Sm+ , we can express each point in Sm+ using at
most m extreme rays - this may be shown using an eigendecomposition. Notice
that this is in spite of the dimension of the PSD cone being larger than m - the
theorem above only gives us an upper bound on the number of elements we need
- here, we can be more efficient!
The PSD cone is associated with a special type of optimization problem. Cone
programs with respect to the PSD cone are called semidefinite programs
(SDPs). They have the form:

v = inf
x∈Ed

⟨c, x⟩ (157)

s.t. Ax+ b ∈ Sm+ (158)

Here, A : Ed → Sm is a linear map, b ∈ Sm+ , and c ∈ Ed.
The constraint set for an SDP has a special name. Sets of the form:

{x ∈ Ed|Ax+ b ∈ Sm+} (159)

Are called spectrahedra. Note that all polyhedra are spectrahedra, but spec-
trahedra are not necessarily polyhedra.

9 Lecture 9: Conic Duality

Let’s recap what we covered last time. Previously, we introduced cone programs,
which minimize a linear function over a constraint set that is the intersection of
a convex cone and an affine space. Cone programs generalize linear programs,
and contain semidefinite programs as a special case. Further, cone programs are

34

tractable if the cones in the constraint set have an efficient internal and external
description.
In this lecture, we’ll study duality and optimality conditions for cone program-
ming. Consider the standard cone program:

v = inf
x∈Ed

⟨c, x⟩ (160)

s.t. Ax+ b ∈ K (161)

Here, A : Ed → En is a linear map, K ⊂ En is a convex cone, b ∈ En, and
c ∈ Ed.
Now, we ask the following question: How can we write the support function
for the constraint set Ax + b ∈ K? To derive the dual of this problem, we’ll
instead consider the constraint set to be an intersection fo simpler constraint
sets. Consider the following reformulation:

v = inf
(x,y)∈Ed×En

⟨c, x⟩ (162)

s.t. Ax+ b− y = 0, y ∈ K (163)

Here, our objective remains linear in x. The two constraints, Ax + b − y = 0
and y ∈ K, form an affine space in Ed × En. This second constraint y ∈ K
may be thought of as a conic condition on both x and y if we represent it as
(x, y) ∈ Ed ×K. This is a conic condition on both x and y.
We now have all of the pieces in place to write down the Fenchel dual of this
problem. First, we must take the conjugate of a linear function - we can do this
without too much trouble. Secondly, we must write the support function of an
affine space. Thirdly, we must write the support function of an convex cone.
There are two main paths that we can take to deriving the Fenchel dual. Once
we have the support functions of each of these sets individually, we can find the
support function of their intersection with the following result:

Proposition 6 Support of an Intersection of Sets
Let S, T ⊂ Ed be two convex sets satisfying int(S) ∩ T ̸= ∅. Then:

hS∩T (x) = inf
y,z∈Ed

hS(y) + hT (z) s.t. y + z = x (164)

This result, when combined with the above, allows us to derive the Fenchel dual
of the cone program. This is a perfectly valid approach to the problem, and is
one way to arrive at the dual!
In this lecture, we’ll follow a slightly different approach that involves somewhat
less notational overhead. This approach will involve a trick that is commonly
used with linear objective functions.
This path towards deriving the Fenchel dual will rely on the following definition:

35

Definition 17 Polar of a Convex Cone
Let K ⊂ En be a convex cone. The polar of K, denoted K◦, is defined as:

K◦ = {y ∈ En| ⟨y, x⟩ ≤ 0 ∀x ∈ K} (165)

Now that we have this definition, let’s get started on deriving the dual! Consider
the convex program with objective and constraint set defined as follows:

f(x, y) = ⟨c, x⟩+ ⟨0, y⟩ , dom(f) = Ed ×K (166)

S = {(x, y)|Ax− y + b = 0} (167)

Notice that we have incorporated the constraint y ∈ K into the domain of the
objective function! To obtain the dual of the optimization with this objective
and constraint, we need to derive the conjugate of f and the support of S. First,
we derive the conjugate of f .

f∗(λ, µ) = sup
(x,y)∈Ed×K

⟨(λ, µ), (x, y)⟩ − ⟨(c, 0), (x, y)⟩ (168)

= sup
(x,y)∈Ed×K

⟨(λ− c, µ), (x, y)⟩ (169)

Now, we notice that Ed × K is a convex cone, and that we are maximizing a
linear function over a convex cone. Thus, we get the following definition of f∗:

f∗(λ, µ) =

{
0, (λ− c, µ) ∈ (Ed ×K)◦

∞, o.w.
(170)

Note that here, ◦ refers to the polar of a cone! This is derived using the fact
that the inersection between a cone and its polar is simply the set {0}. Now,
we examine this function further. We may break up the polar of the Cartseian
product into the polars of each individual set.

f∗(λ, µ) =

{
0, (λ− c) ∈ (Ed)◦, µ ∈ (K)◦

∞, o.w.
(171)

But, the polar of Ed is simply the set {0}. Thus, we have that:

f∗(λ, µ) = 0, dom(f∗) = {(λ, µ)|λ = c, µ ∈ K◦} (172)

This completes the derivation of the conjugate function. Now, we need to deal
with the support function. The support function is defined:

hs(λ, µ) = sup
(x,y)∈Ed×En

⟨(λ, µ), (x, y)⟩ s.t. Ax− y + b = 0 (173)

36

Ax − y + b = 0 forms an affine space in terms of x and y. How can we find
the support function of an affine space? Let’s think about the solution space of
Ax− y + b = 0. First, we rewrite this in terms of the (x, y) vector as:

[A,−I](x, y) + b = 0 (174)

We know that the solution space of this linear system of equations may be
written in the form:

N([A,−I]) + (x0, y0) (175)

Where N([A,−I]) is the null space of [A,−I] and (x0, y0) is a particular solution
to the equation. Note that + here denotes that we are shifting the entire null
space by the vector (x0, y0). Using this representation of the constraint, the
support of the space above may be equivalently written:

= sup
(x,y)∈Ed×En

⟨(λ, µ), (x, y)⟩ s.t. (x, y) ∈ N([A,−I]) + (x0, y0) (176)

= ⟨(λ, µ), (x0, y0)⟩+ sup
(x,y)∈Ed×En

⟨(λ, µ), (x, y)⟩ s.t. (x, y) ∈ N([A,−I]) (177)

Let’s think about the different possibilities for this function. If (λ, µ) is orthog-
onal to the null space of [A,−I], then the remaining supremum will be zero.
Otherwise, this supremum term will go to ∞, as we may scale up a component
of (λ, µ) in the null space until this term goes to infinity.
Under this logic, the support function of the set is defined:

hs(λ, µ) = ⟨(λ, µ), (x0, y0)⟩+

{
0, (λ, µ) ∈ Row([A,−I])
∞, o.w.

(178)

(179)

WhereRow([A,−I]) denotes the row space of [A,−I]. We may rewrite this using
the column space of [A,−I]∗ and define the domain of the resulting function as
follows:

hs(λ, µ) = ⟨(λ, µ), (x0, y0)⟩ , dom(hs) =
{[

A∗ω
−ω

] ∣∣∣ ω ∈ En
}

(180)

Let’s put this support function together with the conjugate to obtain the dual.
The Fenchel dual of our cone program can be expressed as follows:

v∗F = sup
λ∈Ed,µ,ω∈En

−0− [⟨−(λ, µ), (x0, y0)⟩] (181)

s.t. λ = c, µ ∈ K◦, λ = A∗ω, µ = −ω (182)

Notice that, as with all duals, there are no appearances of x or y as decision
variables. Let’s simplify this problem by substituting some of the constraints

37

into the objective function. This yields:

v∗F = sup
ω∈En

⟨(A∗ω,−ω), (x0, y0)⟩ (183)

s.t. A∗ω = c, µ ∈ K◦ (184)

v∗F = sup
ω∈En

⟨ω,Ax0 − y0⟩ (185)

s.t. A∗ω = c, ω ∈ −K◦ (186)

v∗F = sup
ω∈En

−⟨b, ω⟩ (187)

s.t. A∗ω = c, ω ∈ −K◦ (188)

In this final simplification, the decision variable is of dimension n instead of d.
We can check that this dual problem is a strong dual, (v∗F = v), provided that
there exists x̃ such that Ax̃+ b ∈ int(K).
Let’s perform a quick check of weak duality. Recall that in all cases, we should
have v∗F ≤ v. Starting with the primal objective:

⟨c, x⟩ = ⟨c, x⟩+ ⟨b, ω⟩ − ⟨b, ω⟩ (189)

We’d like the last term, −⟨b, ω⟩, to be left over, as this is the Fenchel dual
objective. To show weak duality holds, we’d like to bound the sum of the first
two terms below by zero over all x feasible for the primal and ω feasible for the
dual. Substituting the constraints for this feasibility, we see:

⟨c, x⟩ = ⟨A∗ω, x⟩+ ⟨b, ω⟩ − ⟨b, ω⟩ (190)

= ⟨ω,Ax+ b⟩ − ⟨b, ω⟩ (191)

We know that for feasible ω and x, ω ∈ −K◦ and Ax+ b ∈ K. By the definition
of the polar, this inner product must be greater than or equal to zero. Therefore:

⟨c, x⟩ ≥ − ⟨b, ω⟩ (192)

For all primal feasible x and dual feasible ω.
Let’s recap the process that we took in this check of weak duality. We observe
that we can use Fenchel duality to systematically check what to “add and sub-
tract” to derive a lower bound on the primal objective. In this case, we knew
what to add and subtract to get the Fenchel dual objective to appear on the
right hand side.
At optimality, there must be points where the dual and primal objective are
equal. Recall that for primal optimal x̂ and dual optimal ω̂, the inequality
above holds with equality in the case that strong duality holds. Analyzing this
case for specific cone programs helps us find the optimality conditions associated
with that problem.

38

10 Lecture 10: Linear & Semidefinite Programs

Last lecture, we derived the dual form of a cone program. Recall that the
standard primal form of a cone program is:

v = inf
x∈Ed

⟨c, x⟩ (193)

s.t. Ax+ b ∈ K (194)

Where A : Ed → En is a linear map, b ∈ En, c ∈ Ed, and K ⊂ En is a convex
cone.
The dual problem that we derived via Fenchel duality was:

v∗F = sup
ω∈En

−⟨b, ω⟩ (195)

s.t. A∗ω = c, ω ∈ −K◦ (196)

In this lecture, we’ll discuss linear programs, a special case of the cone program
in which the cone K is the nonnegative orthant, Rn

+. Following this we’ll exam-
ine semidefinite programming, in which K is the cone of PSD matrices.
We’ll begin with linear programming. This type of problem, which aims to opti-
mize a linear objective over a polyhedron, may be written in the standard cone
program form as an optimization over Ax+ b ∈ K, where K is the nonnegative
orthant.
Let’s think of some examples of common constraint sets for linear programs.
First, we consider the simplex in Rn, defined:

∆n = {x ∈ Rn| ⟨1, x⟩ = 1, x ≥ 0} (197)

This set is a polyhedron. This may be seen by reformulating the definition of
the set as follows

∆n = {x ∈ Rn| ⟨1, x⟩ ≥ 1, ⟨1, x⟩ ≤ 1, x ≥ 0 (198)

This forms a system of linear inequalities that may be represented in the stan-
dard polyhedron form Ax ≤ b. Looking at this expanded representation of the
simplex, we see that we need n + 2 inequality constraints to represent the set
(2 from the ⟨1, x⟩ conditions and n from xi ≥ 0 ∀i). This means that we need a
nonnegative orthant of size n+ 2 to describe the simplex in the standard cone
programming form.
Next, we consider the l∞ ball in Rn. This set is defined:

Bl∞ = {x ∈ Rn|max
i
|xi| ≤ 1} (199)

= {x ∈ Rn| − 1 ≤ xi ≤ 1, i = 1, ..., n} (200)

From this second representation of Bl∞ , we see that we may write this set as a
polyhedron with 2n linear inequality constraints.

39

Next, we examine the l1 ball in Rn. This set is described:

Bl1 = {x ∈ Rn|
∑
i

|xi| ≤ 1} (201)

= {x ∈ Rn| max
u∈{−1,+1}n

⟨u, x⟩ ≤ 1} (202)

Here, our alternate representation of the set takes the maximum over all signed
vectors in Rn, the vectors where each element is either +1 or −1. Using a
counting argument, we can show that this involves 2n inequalities for the linear
program constraint, which is challenging to deal with in high dimensions!
To reduce the amount of inequalities needed to describe this constraint set, we
may write the l1 ball as a projection of a higher dimensional object onto a lower
dimensional space. Consider the following representation of the ball:

Bl1 = {x ∈ Rn| ∃y ∈ Rn s.t. − yi ≤ xi ≤ yi, i = 1, ..., n, ⟨1, y⟩ ≤ 1} (203)

This is a description of the l1 ball with n extra variables but only 2n+ 1 linear
inequalities!
Let’s show that this representation of the l1 ball is equivalent to our standard
representation. First, suppose x ∈ Bl1 , the standard representation of the l1
ball. If y is chosen such that yi = |xi|, then the constraint on the alternate
representation is satisfied! Thus, we conclude that our standard representation
is a subset of the alternate representation.
Now, we go the other way. Let x be in the alternate representation of the l1
ball. If

∑
i yi ≤ 1, then we know

∑
i |xi| ≤ 1. This tells us that the alternate

representation is a subset of the standard representation. Thus, the two are
equivalent!
These examples conjure the following question regarding the constraint sets of
linear programs: given a particular constraint set for a linear program, what is
the “minimal representation” of the constraint set? The linear program rank
of a polyhedron is defined to be the smallest size description of a polyhedron.
This provides a numerical answer to this question.
Note that although the norm balls discussed above have polyhedron represen-
tations, this is not the case for all norm balls! For instance, the Euclidean ball
has no representation as a polyhedron.
Let’s now turn our attention back to the case of a specific linear program for
the case of the l1 ball. Concretely, suppose that we wish to solve:

inf
x∈Rn

⟨c, x⟩ s.t. x ∈ Bl1 (204)

= inf
(x,y)∈R2n

⟨(c, 0), (x, y)⟩ (205)

s.t. (x, y) ∈ {(x, y) ∈ R2n| − yi ≤ xi ≤ yi, ⟨1, y⟩ ≤ 1} (206)

Here, to accommodate the extra y, we simply add a vector of zeros to the end
of c. Such descriptions in which we add extra variables and obtain a “simplex”
set in a higher dimensional case are called extended formulations.

40

Optimality Conditions for a Linear Program

Recall that the problem of interest is:

inf
x∈Rd

⟨c, x⟩ (207)

s.t. Ax+ b ∈ Rn
+ (208)

Where the dual of this problem is given by:

sup
ω∈Rn

−⟨b, ω⟩ (209)

s.t. A∗ω = c, ω ∈ −(Rn
+)

◦ (210)

Let’s perform a quick check that weak duality holds for this dual formulation.
Weak duality follows via the sequence of inequalities:

⟨c, x⟩ = ⟨c, x⟩+ ⟨b, ω⟩ − ⟨b, ω⟩ (211)

= ⟨A∗ω, x⟩+ ⟨b, ω⟩ − ⟨b, ω⟩ (212)

= ⟨ω,Ax+ b⟩ − ⟨b, ω⟩ (213)

Here, we know that any feasible ω satisfies ω ∈ −(Rn
+)

◦ and any feasible x
satisfies Ax + b ∈ Rn

+. Without too much trouble, we can actually check that
−(Rn

+)
◦ = Rn

+! This tells us that the first inner product must be non-negative,
by definition of the non-negative orthant. Thus, we have that:

⟨c, x⟩ ≥ − ⟨b, ω⟩ (214)

For primal feasible x and dual feasible ω. Thus, weak duality holds in this
problem.
Let’s examine duality further for this problem. Suppose strong duality holds,
with x̂ primal optimal and ω̂ dual optimal. In this case, we should have by
strong duality that:

⟨ω̂, Ax̂+ b⟩ = 0 (215)

Let’s rewrite this inner product condition element-wise. We know that both ω̂
and Ax̂+ b must be entry-wise non-negative, since they are in the non-negative
orthant. Thus, for the condition above to hold, we require that for all i ∈ 1, ..., n:

ω̂i · (Ax̂+ b)i = 0 (216)

This condition is known as complementarity. Note that this is one particular
instance of a complementarity condition for linear programs - conditions of this
form also exist for more general problems.
Let’s summarize the set of optimality conditions for a linear program. We have:

Primal Feasibility: Ax̂+ b ∈ Rn
+ (217)

Dual Feasibility: A∗ω = c, ω ∈ Rn
+ (218)

Complementarity: ω̂i · (Ax̂+ b)i = 0, i = 1, ..., n (219)

So, any (ω̂, x̂) pair satisfying these three will mean that x̂ is optimal. These
conditions therefore form a certificate of optimality of x̂.

41

Semidefinite Programming

Now, we shift our attention to semidefinite programming (SDP). Here, the con-
straint sets are of the form:

S = {x ∈ Ed|Ax+ b ∈ Sm+} (220)

Where A : Ed → Sm+ is a linear map and b ∈ Sm. We recall that sets of the form
S are called spectrahedra. Semidefinite programs are the class of problems in
which a linear function is optimized over a spectrahedron. Let’s see if we can
use the same trick as before to rewrite this constraint set S as the projection of
a higher dimensional spectrahedron.
Before we do this, we recall the following key fact about polyhedrons: a projec-
tion of a polyhedron is always a polyhedron, as linear transformations preserve
polyhedron structure. However, this is not true in general for spectrahedra!
Now, we consider some examples of spectrahedra. First, consider the set:

S = {x ∈ Ed|Ax+ b ∈ Rn
+} (221)

Here, A : En → Rn is linear and b ∈ Rn. This set is a polyhedron! Can we verify
that this is a spectrahedron? To show this, we must find some map A : Ed → Sm+
and a b ∈ Sm that completely characterize the set.
For convenience, we consider the case where A : Rd → Rn. Then, we decompose
A using its columns as Ax :=

∑d
i=1 A

(i)xi. We then define A : Rd → Sn+ as:

Ax =

d∑
i=1

A
(i)
xi (222)

Where A
(i)

= diag(A(i)) and B = diag(b), the diagonal matrices with A(i) and
b as their diagonal entries. Thus, we see that we may write this polyhedron as
a spectrahedron! For the more general case, we may show that all polyhedra
are spectrahedra. However, not all spectrahedra are polyhedra.
Let’s now consider the following example:

Bl2 = {x ∈ Rd|xTx ≤ 1} (223)

We know that this set is not a polyhedron, since it requires an infinite number
of halfspace constraints to represent. How else can we represent this set? We
may alternatively write this set as:

Bl2 =
{
x ∈ Rd

∣∣∣ [1 xT

x I

]
⪰ 0

}
(224)

Thus, this set is a spectrahedron, but not a polyhedron! This rewriting is
accomplished using Schur complements. The Schur complement rule states
that for a symmetric matrix: [

A BT

B C

]
(225)

42

Where C ≻ 0, we have that:

A−BTC−1B ⪰ 0⇔
[
A BT

B C

]
⪰ 0 (226)

This is a useful tool that enables us to rewrite many sets as spectrahedra.

11 Lecture 11: Lagrange Duality I

Over the last few lectures, we’ve looked at optimization problems of the form:

v = inf
x∈Ed

f(x) (227)

s.t. x ∈ S (228)

Now, we’ll turn our attention to optimization problems of the form:

v = inf
x∈Ed

f0(x) (229)

s.t. fi(x) ≤ 0, i = 1, ..., k, gi(x) = 0, j = 1, ...,m (230)

Here, f0, ..., fk, g1, ..., gm : Ed → R. Optimization problems of this form are
called nonlinear programs (NLPs).
In this lecture, we’ll examine the Lagrange duality scheme, the most com-
monly used duality scheme in nonlinear programming. We’ll follow the same
two steps in coming up with this duality scheme as we did in Fenchel duality.
Recall: to certify that some γ is a lower bound on the optimal value of the
primal problem, v (and hence establishes a duality scheme), we will follow a
two step process.

1. First, we reformulate the problem of proving a lower bound as a separation
of two special sets. For the Lagrange duality scheme, we define two sets,
S and T . S is defined:

S = {(t, u) ∈ Rk+1 × Rm| ∃x ∈ Ed s.t.(x, t0) ∈ epi(f0 − γ), (231)

(x, ti) ∈ epi(fi), i = 1, ..., j (232)

gj(x) = uj , j = 1, ...,m} (233)

While T is defined:

T = {(t, u) ∈ Rk+1 × R| t0 < 0, (234)

ti ≤ 0, i = 1, ..., k, (235)

uj = 0, j = 1, ...,m} (236)

Observe that γ ≤ v is equivalent to the sets S and T being disjoint.

2. Secondly, we certify that S ∩ T = ∅ using a separating hyperplane with
normal vector (λ, µ) ∈ Rk+1 × Rm such that λ0 ̸= 0.

43

This is the same two step process that we took when developing Fenchel duality:
reformulate γ ≤ v as showing two sets are disjoint, and find a hyperplane to
certify that the sets are disjoint.
Let’s think about why these S and T give us a valid duality scheme. When
S ∩ T = ∅, there is no x in Ed such that (f0 − γ)(x) ≤ t0 < 0, fi(x) ≤ ti ≤ 0,
and gj(x) = uj = 0. This implies that γ gives a lower bound on v.
When can we expect the procedure of hyperplane separation, used in step 2 of
the duality scheme, to work? We know that S and T must be convex to apply
the separating hyperplane theorem. Is this the case? Looking at the sets above,
we see that T is always convex, and that the convexity of S depends on the
convexity of the optimization problem.
Now that we’ve discussed these two points, let’s examine step 2 of the procedure:
separating S and T with a hyperplane. We aim to identify a (λ, µ) ∈ Rk+1×Rm

with λ0 ̸= 0 such that:

S ⊂ {(t, u)| ⟨λ, t⟩+ ⟨µ, u⟩ ≥ δ} (237)

T ⊂ {(t, u)| ⟨λ, t⟩+ ⟨µ, u⟩ < δ} (238)

We may now frame this as an optimization problem. The dual problem corre-
sponding to the Lagrange duality scheme is:

v∗L = sup
(λ,µ)∈Rk+1×Rm, δ,γ∈R

γ (239)

s.t. S ⊂ {(t, u)| ⟨λ, t⟩+ ⟨µ, u⟩ ≥ δ} (240)

T ⊂ {(t, u)| ⟨λ, t⟩+ ⟨µ, u⟩ < δ}, λ0 ̸= 0 (241)

How can we simplify this problem? If λ0 ̸= 0, and λ, µ, δ are feasible, then
we may multiply (λ, µ, δ) by any positive number and retain feasibility. Thus,
without loss of generality, we may assume λ0 is equal to 1 or −1.
Let’s examine the case where λ = −1. Based on the T constraint, we require:

⟨λ, t⟩+ ⟨µ, u⟩ < δ (242)

Here, t can be made arbitrarily small, since t0 < 0. This means that if λ0 = −1,
then the term ⟨λ, t⟩ can be made to grow arbitrarily large! Thus, if λ0 = −1, it
would be impossible to find an upper bound δ on this expression. We therefore
conclude that λ0 must be equal to 1.
Now, we have a reduction of the complexity of the problem by one variable.
Now, the constraint in the Lagrange dual is simplified as:

S ⊂ {(t, u) ∈ Rk+1 × Rm|t0 + ⟨λ1:k, t1:k⟩+ ⟨µ, u⟩ ≥ δ} (243)

Since (x, t0) ∈ epi(f0−γ), we conclude that the smallest value of t0 is f0(x)−γ).
thus, this constraint implies:

(f0(x)− γ) +

k∑
i=1

λiti +

m∑
j=1

µjgj(x) ≥ δ (244)

∀x ∈ Ed s.t. (x, ti) ∈ epi(fi), i = 1, ..., k (245)

44

Where we have simply expanded the inner products to get the two sum terms.
Next, to simplify this further, we’d like to replace the instances of ti with fi(x).
However, we can only do this if λi ≥ 0, as this will preserve the direction of the
inequalities. Let’s see if we can show λi ≥ 0.
To do this, we examine the constraint on T :

T ⊂ {(t, u)|t0 + ⟨λ1:k, t1:k⟩+ ⟨µ, u⟩ < δ} (246)

This constraint implies that λi ≥ 0, since ti can be made arbitrarily small. This
implies that if λi < 0, we could get an arbitrarily large quantity that could not
be bounded above by a δ. This gives the desired constraint on λi.
Notice that µ ∈ Rm is unrestricted, as we take its inner product with u, which
is constrained to be a vector of zeros.
Thus, we may replace the instances of ti with fi in the expression above to get:

f0(x) +

k∑
i=1

λifi(x) +

m∑
j=1

µjgj(x) ≥ δ + γ (247)

∀x ∈ dom(f0) ∩ ... ∩ dom(gm) (248)

Notice that here, we have also moved γ to the other side of the inequality. This
simplification leads us to the following important function:

Definition 18 Lagrangian of an NLP
The Lagrangian associated with a nonlinear program is the function:

L(x, λ, µ) = f0(x) +

k∑
i=1

λifi(x) +

m∑
j=1

µjgj(x) (249)

Where f0 is the objective of the NLP, fi are from its inequality constraints, and
gj are from its equality constraints.

The Lagrangian involves both (λ, µ) and the primal variable x. Before we pro-
ceed, let’s redefine λ to be a vector in Rk instead of Rk+1 - we can do this since
we know that its first element is 1 without loss of generality.
Now, we define another important function:

Definition 19 Dual Function of an NLP
Let L(x, λ, µ) be the Lagrangian associated with a nonlinear program. The dual
function ν(λ, µ) is defined:

ν(λ, µ) = inf
x∈Ed

L(x, λ, µ) (250)

s.t. x ∈ dom(f0) ∩ ... ∩ dom(gm) (251)

45

Notice that the dual function eliminates x from the Lagrangian by minimiz-
ing over it. With these two functions, we may now reformulate the problem
associated with the Lagrange duality scheme as follows:

v∗L = sup
λ∈Rk,µ∈Rm,δ,γ∈R

γ (252)

s.t.ν(λ, µ) ≥ δ + γ, λ ∈ Rk
+, δ ≥ 0 (253)

Here, the constraint ν(λ, µ) ≥ δ + γ comes from the S halfspace constraint,
while λ ∈ Rk

+, δ ≥ 0 come from the T halfspace constraint.
Let’s see if we can eliminate δ and γ from this expression. We know from the
constraint that the largest value of γ we can pick is ν(λ, µ)−δ. Thus, eliminating
γ, we get:

v∗L = sup
λ∈Rk,µ∈Rm,δ∈R

ν(λ, µ)− δ (254)

s.t. λ ∈ Rk
+, δ ≥ 0 (255)

Now, we may eliminate δ using δ = 0. This gives the optimization:

v∗L = sup
λ∈Rk,µ∈Rm

ν(λ, µ) (256)

s.t. λ ∈ Rk
+ (257)

This is the Lagrange dual problem associated with the primal problem.

Definition 20 Lagrange Dual
The Lagrange dual problem associated with a given primal problem is:

v∗L = sup
λ∈Rk,µ∈Rm

ν(λ, µ) (258)

s.t. λ ∈ Rk
+ (259)

Where ν(λ, µ) is the dual function of the nonlinear program.

To summarize, the Lagrange dual of an NLP is derived as follows:

1. Formulate the Lagrangian associated with the NLP:

L(x, λ, µ) = f0(x) +

k∑
i=1

λifi(x) +

m∑
j=1

µjgj(x) (260)

2. Derive the dual function:

ν(λ, µ) = inf
x∈Ed

L(x, λ, µ) (261)

s.t. x ∈ dom(f0) ∩ ... ∩ dom(gm) (262)

46

3. Write down the Lagrange dual problem:

v∗L = sup
λ∈Rk,µ∈Rm

ν(λ, µ) (263)

s.t. λ ∈ Rk
+ (264)

Let’s check that the Lagrange dual problem satisfies weak duality with respect
to the primal. We know that weak duality is satisfied by construction, since the
Lagrange dual was constructed by forming lower bounds on the primal optimal
value using the Lagrange duality scheme. Thus, we know that weak duality,
v∗L ≤ v, should hold.
We can also verify that weak duality holds with our usual “add and subtract
method.” We know:

f(x) ≥ f0(x) +

k∑
i=1

λifi(x) +

m∑
j=1

µjgj(x) (265)

This is because λi ≥ 0, fi ≤ 0, which makes
∑

λifi ≤ 0, and because
∑

µjgj =
0. Since the quantity on the right hand side is the Lagrangian, we have that:

f(x) ≥ inf
x∈dom(f1)∩...∩dom(gm)

L(x, λ, µ) = ν(λ, µ) (266)

This holds for all primal feasible x and dual feasible (λ, µ). Thus, weak duality
must hold.

12 Lecture 12: Lagrange Duality II

First, we recall from the previous lecture that a nonlinear program is an opti-
mization of the form:

v = inf
x∈Ed

f0(x) (267)

s.t. fi(x) ≤ 0, i = 1, ..., k, gj(x) = 0, j = 1, ...,m (268)

Here, f0, ..., fk, g1, ..., gm : Ed → R. The Lagrangian associated with this non-
linear program is:

L(x, λ, µ) = f0(x) +

k∑
i=1

λifi(x) +

m∑
j=1

µjgj(x) (269)

And the dual function is:

ν(λ, µ) = inf
x∈dom(f0)∩...∩dom(gm)

L(x, λ, µ) (270)

47

Putting these all together, the Lagrange dual problem is:

v∗L = sup
λ∈Rk,µ∈Rm

ν(λ, µ) (271)

s.t. λ ∈ Rm
+ (272)

Last lecture, we showed that weak duality holds for the Lagrange dual problem,
which implies:

v∗L ≤ v (273)

In this lecture, we’ll consider the conditions under which strong duality, v∗L = v,
holds.

Theorem 6 Strong Duality of the Lagrange Duality Scheme
Consider a nonlinear program:

v = inf
x∈Ed

f0(x) (274)

s.t. fi(x) ≤ 0, i = 1, ..., k, ⟨a(j), x⟩+ bj = 0, j = 1, ...,m (275)

Here, f0, f1, ..., fk : Ed → R with domains dom(fi) ⊂ Ed and a(j) ∈ Ed, bj ∈ R
for j = 1, ...,m. Suppose the following conditions hold:

1. f0, ..., fk are convex functions.

2. a(1), ..., a(m) are linearly independent.

3. There exists an x ∈ int(dom(f0) ∩ ... ∩ dom(fk)) such that fi(x) < 0, i =
1, ..., k, and ⟨a(j), x⟩ + bj = 0, j = 1, ...,m. These two conditions are
collectively called Slater’s conditions.

Then, we have that the Lagrange duality scheme exhibits strong duality, i.e.
v∗L = v. Moreover, provided v is finite, there exists an optimal solution for the
Lagrange dual problem.

Before we prove this theorem, let’s make a couple of notes about what it states.
First, notice that the third condition for strong duality, regarding existence of
an x, essentially states that the constraint set is feasible in a “non-degenerate”
way - there are feasible points in its interior.
Secondly, note that under strong duality, there exists an optimal solution for
the Lagrange dual problem even if there is no optimal solution to the primal.
Thirdly, note that the theorem above simply provides sufficient conditions for
strong duality - these are not necessary.
As a quick side note, let’s think about why the equality constraints in the prob-
lem formulation have an explicit form. We know that we can write down any

48

equality constraint using inequalities as −f(x) ≤ 0 and f(x) ≤ 0. However,
for strong duality, we require both −f and f to be convex functions! If we
consider the set of functions where −f and f are both convex, we find that we
are restricted to the set of affine functions. This is what provides the explicit
affine form of the inequality constraints in the problem above. When a nonlinear
program is written in this form, it is called a convex nonlinear program.
Let’s now work on developing a proof for this theorem.

Proof: Recall that the Lagrange duality scheme entails separating the two
sets:

S = {(t, u) ∈ Rk+1 × Rm| ∃x ∈ Ed s.t. (x, t0) ∈ epi(f − γ), (276)

(xi, ti) ∈ epi(fi) i = 1, ..., k, (277)

⟨a(i), x⟩+ bj = uj j = 1, ...,m} (278)

T = {(t, u) ∈ Rk+1 × Rm|t0 ≤ 0, t1:k ≤ 0, u = 0} (279)

Where γ ≤ v. To separate these two sets, we need to show that there exists a
hyperplane, given by a normal (λ, µ) ∈ Rk+1 × Rm with λ0 ̸= 0 and translate
s ∈ R, such that:

S ⊂ {(t, u)| ⟨λ, t⟩+ ⟨µ, λ⟩ ≥ δ} (280)

T ⊂ {(t, u)| ⟨λ, t⟩+ ⟨µ, λ⟩ < δ} (281)

If we show this for the case where γ = v, where strong duality holds, then
the proof of this theorem is complete! This is because this will show that the
conditions proposed in the theorem allow for separation of S and T in the case
of strong duality.
First, we’ll show that S and T are separated by a hyperplane. Since f0, ..., fk
are convex, we know that S is convex. This is because the set is convex with
respect to (x, t, u), so we can “project out” x to get that S is convex in t and
u. By definition of T , we also know that T is convex.
We also know that S ∩ T = ∅. This comes from construction of the Lagrange
duality scheme - that for any γ ≤ v, S and T are disjoint.
Therefore, by the separation theorem, we know there exists a hyperplane given
by normal (λ, µ) ∈ Rk+1 × Rm\{0} and a δ ∈ R such that:

S ⊂ {(t, u)| ⟨λ, t⟩+ ⟨µ, λ⟩ ≥ δ} (282)

T ⊂ {(t, u)| ⟨λ, t⟩+ ⟨µ, λ⟩ ≤ δ} (283)

Now, we will show that the inequality on the T halfspace is strict. Suppose
that λ0 ̸= 0. Then, we have, by our earlier discussion of Lagrange duality, that
λ0 = 1 without loss of generality. Then, by the definition of T , since t0 < 0, we
can conclude that:

T ⊂ {(t, u)|t0 + ⟨λ1:k, t1:k⟩ < δ} (284)

49

Since we know that t0 is strictly less than 0. So, if λ0 ̸= 0, we have our desired
condition!
Let’s show that λ0 ̸= 0 in all cases. Suppose for contradiction that λ0 = 0.
Then, we must have that:

(λ1:k, µ) ∈ Rk × Rm\{0} (285)

This is because the entire λ cannot be the zero vector. Next, we have from
T ⊂ {(t, u)| ⟨λ1:k, t1:k⟩ + ⟨µ, u⟩ ≤ δ} that λ1:k ≥ 0. This is because t1:k can be
arbitrarily negative, and we must bound the left hand side above by some δ.
Also, we know that δ ≥ 0, since if δ < 0, we would not be able to satisfy the
inequality.
Applying these two conditions to the halfspace condition involving S, we have
that:

k∑
i=1

λifi(x) +

m∑
j=1

µj(⟨a(j), x⟩+ bj) ≥ δ ∀x ∈ dom(f0) ∩ ... ∩ dom(fk) (286)

Then, there exists an x ∈ int(dom(f0) ∩ ... ∩ dom(fk)) such that fi(x) < 0 and
⟨a(j), x⟩+ bj = 0 for all i and j.
But, since δ ≥ 0 and the sum of the fi’s and inner products must be ≤ 0, we
have that λ1:k = 0 if λ0 = 0.
Now, we will look at µ. We must have that µ ̸= 0, since λ = 0. Then, we are
left with:

⟨
m∑
j=1

µja
(j), x⟩+ ⟨µ, b⟩ ≥ δ ∀x ∈ dom(f0) ∩ ... ∩ dom(fk) (287)

If µ ̸= 0 and each a(j) are linearly independent, then
∑

µja
(j) ̸= 0. So, this

sum can define a valid normal vector for a hyperplane! This tells us that the
conditions above define a valid hyperplane such that dom(f0)∩ ...∩dom(fk) lies
in one halfspace.
However, since x satisfies ⟨a(j),x⟩ + bj = 0 ∀j from the equality constraints on
the optimization, we know that x must be on the hyperplane. But, by our
earlier development, it must also be in the interior of dom(f0) ∩ ... ∩ dom(fk).
Since it cannot be in the interior of this set and on the hyperplane, we have
reached a contradiction.
This provides the final piece of the strong duality theorem. □

13 Lecture 13: Optimality Conditions for NLPs

Consider a nonlinear program:

v = inf
x∈Ed

f(x) (288)

s.t. fi(x) ≤ 0, i = 1, ..., k (289)

gj(x) = 0, j = 1, ...,m (290)

50

Recall that the Lagrangian associated with this nonlinear program is:

L(x, λ, µ) = f0(x) +

k∑
i=1

λifi(x) +

m∑
j=1

µjgj(x) (291)

While the dual function is:

ν(λ, µ) = inf
x∈Ed

L(x, λ, µ) (292)

Using these two functions, we define the Lagrange dual of the primal problem
as:

v∗L = sup
λ∈Rk,µ∈Rm

ν(λ, µ) s.t. λ ∈ Rn
+ (293)

Last time, we proved that under the following conditions, the Lagrange dual is
a strong dual :

1. Convex NLP: f0, ..., fk are convex and gj(x) = ⟨a(j), x⟩+bj , j = 1, ...,m.

2. Slater’s Conditions: There exists x ∈ int(dom(f0) ∩ ... ∩ dom(fk) such
that fi(x) < 0, i = 1, ..., k, and ⟨a(j), x⟩+ bj = 0, j = 1, ...,m, where the
set of a(j) is linearly independent.

Now that we’ve established these conditions, we can derive some optimality con-
ditions for convex nonlinear programs. Consider an arbitrary convex nonlinear
program satisfying Slater’s conditions, and suppose that:

x̂ ∈ int(dom(f0) ∩ ... ∩ dom(fk)) (294)

Is an optimal solution to the primal problem. By weak duality, we know that
for an optimal solution (λ̂, µ̂) of the dual problem, we have that:

f0(x̂) ≥ f0(x̂) +

k∑
i=1

λ̂ifi(x̂) +

m∑
j=1

µ̂jgj(x̂) (295)

= L(x̂, λ̂, µ̂) (296)

≥ inf
x∈dom(f0)∩...∩dom(fk)

L(x, λ̂, µ̂) (297)

= ν(λ̂, µ̂) (298)

Note that we know an optimal (λ̂, µ̂) exists because Slater’s conditions hold.
Since the problem is convex and Slater’s conditions hold, we know that strong
duality holds! Thus, we have that:

f0(x̂) = ν(λ̂, µ̂) (299)

51

Therefore, the two inequalities in the preceding reasoning hold with equality!
This allows us to conclude from the chain of equalities that:

k∑
i=1

λ̂ifi(x̂) = 0 (300)

Under what conditions does this hold? Let’s think about the different impli-
cations of this constraint, bearing in mind that λi ∈ Rn

+. Since λi ∈ Rn
+, and

fi(x̂) ≤ 0 by definition of the inequality constraint, we know that:

λ̂ifi(x̂) = 0, i = 1, ..., k (301)

Since if this were not the case, the sum of λ̂ifi(x̂) would not equal zero. What
implications does the sign of the inequality constraint have on this result?
First, consider the case where fi(x̂) < 0. In this case, we will have that λ̂i = 0.

On the other hand, if λ̂i = 0, then fi(x̂) = 0, so the constraint will be tight.
Now, we consider a second consequence of the chain of inequalities from strong
duality. Because the inequalities are satisfied with equality, we require that x̂
minimizes L(x, λ̂, µ̂) over dom(f0) ∩ ... ∩ (fk). For a fixed λ̂, µ̂, we know that

L(x, λ̂, µ̂) is a convex function for a convex NLP. Thus, because x̂ is a minimizer,
0 must be in its subdifferential.
Putting all of these conditions together, we get the following optimality condi-
tions for primal optimal x̂ and dual optimal (λ̂, µ̂):

Definition 21 Karush-Kuhn-Tucker (KKT) Conditions

Any x̂, (λ̂, µ̂) satisfying the following conditions will be optimal for a convex
nonlinear program:

1. Primal Feasibility: fi(x̂) ≤ 0, i = 1, ..., k, ⟨a(j), x⟩+ bj = 0, j = 1, ...,m.

2. Dual Feasibility: λ̂i ∈ Rk
+.

3. Complementary Slackness: λ̂i · fi(x̂) = 0, i = 1, ..., k.

4. Subdifferential: 0 ∈ ∂xL(x, λ̂, µ̂) at x̂.

So, suppose we have a convex NLP satisfying Slater’s conditions. If x̃ ∈
int(dom(f0)∩ ...∩ dom(fk)) and (λ̃, µ̃) ∈ Rk ×Rm satisfy the KKT conditions,
then x̃ is primal optimal and (λ̃, µ̃) are dual optimal. Notice that “int(...)” is
only used here since the subdifferential of a function, as required in the KKT
conditions, is only defined on the interior of a function’s domain.

52

Comparing & Contrasting Fenchel and Lagrange Duality

Consider the following optimization problem:

v = inf
x∈Rd

⟨x,Mx⟩ s.t.x ∈ S (302)

Here, let S := {x ∈ Rd| ||x||l2 ≤ 1} and M ∈ Sd. We know that the primal
solution, v, is equal to v = min{0, λmin(M)}. What are v∗F and v∗L, the optimal
values of the Fenchel and Lagrange dual problems?
First, let’s consider v∗F . We know that if M ⪰ 0, then the objective function
of the primal is convex, which implies strong duality. This provides v∗F = v.
On the other hand, if M is not PSD, we can show that the Fenchel dual gives
v∗F = −∞.
Now, consider the Lagrange dual. For v∗L, we once again have that v∗L = v when
M ⪰ 0, as the objective will be convex in this case. If M is not PSD, then we
don’t have a convex problem. Let’s derive the Lagrangian and dual function for
this case!

L(x, λ) = ⟨x,Mx⟩+ λ(||x||l2 − 1) (303)

ν(λ) = inf
x∈Rd

⟨x,Mx⟩+ λ(||x||l2 − 1) = −∞ (304)

We get −∞ for the dual function since we can make ⟨x,Mx⟩ go to −∞ quadrat-
ically fast in x, while ||x||l2 only grows linearly in x. So, just like the Fenchel
dual, the Lagrange dual problem also has v∗L =∞ for any λ ≥ 0.
Let’s adjust our statement of the problem slightly. Consider the equivalent
primal problem:

v = inf
x∈Rd

⟨x,Mx⟩ (305)

s.t. ||x||2l2 ≤ 1 (306)

Notice that this is the same exact problem as the primal, just with a square in
the constraint. With this reformulated constraint, we have that:

L(x, λ) = ⟨x,Mx⟩+ λ(⟨x, x⟩ − 1) (307)

ν(λ) = inf
x∈Rd

⟨x, (M + λI)x⟩ − λ (308)

=

{
−λ, M + λI ⪰ 0

−∞, o.w.
(309)

Now that we have a finite dual function for a range of λ, we may formulate the
Lagrange dual problem:

v∗L = sup
λ∈R
−λ (310)

s.t. M + λI ⪰ 0, λ ≥ 0 (311)

= min{0, λmin(M)} (312)

53

Here, 0 is the optimal value when M is PSD, and λmin(M) is the optimal value
otherwise. This is because it is the smallest λ such that M + λI ⪰ 0. So, we
see that for this reformulated constraint, we get the same result as the primal
problem! Interestingly, this tells us that when we write the constraint differently
for the Lagrangian, we get a different optimal solution.
Let’s summarize some differences between the Fenchel and Lagrange duality
schemes using this example. The Fenchel duality scheme requires less infor-
mation regarding the description of the constraint set, as it simply relies on
a support function. The Lagrange duality scheme may require more informa-
tion about the constraint set or a different problem description but this extra
information can be used to get a better lower bound.

14 Lecture 14: Lagrangian Relaxation

In this lecture, we’ll discuss a Lagrangian perspective on conic duality. Recall
that a cone program is an optimization of the form:

v = inf
x∈Ed

⟨c, x⟩ (313)

s.t. Ax+ b ∈ K (314)

Where A : Ed → En is a linear map, b ∈ En, and K ⊂ En is a convex cone.
To derive a dual of this problem using the Lagrange duality scheme, we’ll in-
troduce an additional variable, just as we did before with the Fenchel duality
scheme. Consider the reformulation:

v = inf
x∈Ed,y∈En

⟨(c, 0), (x, y)⟩ (315)

s.t. Ax+ b− y = 0 (316)

(x, y) ∈ Ed ×K (317)

This problem can be reformulated as:

v = inf
x∈Ed,y∈En

f0(x, y) (318)

s.t.Ax+ b− y = 0 (319)

Here, f0(x, y) = ⟨c, x⟩ with dom(f0) = Ed×K - we simply incorporate the second
constraint into the domain of the objective to achieve this reformulation.
Now, we’ll compute the Lagrangian and dual function:

L(x, y, µ) = ⟨(c, 0), (x, y)⟩+ ⟨µ,Ax+ b− y⟩ (320)

ν(µ) = inf
(x,y)∈Ed×K

L(x, y, µ) (321)

When determining the dual function, it’ll be instructive to only eliminate the
y variable (the extra variable we added to the reformulation) first. This will

54

eliminate the extra variable we added in and bring the problem back to its
original set of variables. We define:

L(x, µ) = inf
y∈K

L(x, y, µ) (322)

= inf
y∈K
⟨(c, 0), (x, y)⟩+ ⟨µ,Ax+ b− y⟩ (323)

=
[
inf
y∈K
⟨µ,−y⟩

]
+ ⟨c, x⟩+ ⟨µ,Ax+ b⟩ (324)

= ⟨c, x⟩+ ⟨µ,Ax+ b⟩+

{
0, µ ∈ K◦

−∞, o.w.
(325)

This observation suggests a natural Lagrangian for a cone program! L suggests
that µ should be in the polar cone of K. So, we may now get rid of our extra
variable y and write down the Lagrangian:

L(x, µ) = ⟨c, x⟩+ ⟨µ,Ax+ b⟩ , µ ∈ K◦ (326)

When µ ∈ K◦ is satisfied, then we get a Lagrangian just in terms of µ, x. With
this Lagrangian, the dual function becomes:

ν(µ) = inf
x∈Ed

⟨c, x⟩+ ⟨µ,Ax+ b⟩ (327)

ν(µ) =

{
⟨b, µ⟩ , A∗µ+ c = 0

−∞, o.w.
(328)

The Lagrange dual problem is then:

v∗L = sup
µ∈En

⟨b, µ⟩ (329)

s.t. A∗µ+ c = 0, µ ∈ K◦ (330)

To see how flexible this approach is, consider the following problem:

v = inf
x∈Ed

⟨c, x⟩ (331)

s.t. A(1)x+ b(1) ∈ K(1) (332)

... (333)

A(m)x+ b(m) ∈ K(m) (334)

We can write the following Lagrangian:

L(x, µ(1), ..., µ(m)) = ⟨c, x⟩+
m∑
j=1

⟨µj , A
(j)x+ b(j)⟩ , µ(j) ∈ K◦

j (335)

We define the dual function accordingly as:

ν(µ(1), ..., µ(m)) =

{∑m
j=1 ⟨µ(j), b(j)⟩ , c+

∑m
j=1 A

(j)∗µ(j) = 0

−∞, o.w.
(336)

55

The Lagrange dual problem is then:

v∗L = sup
µ(1),...,µ(m)

m∑
j=1

⟨µ(j), b(j)⟩ (337)

s.t µ(j) ∈ K◦
j , j = 1, ...,m (338)

c+

m∑
j=1

A(j)∗µ(j) = 0 (339)

This gives a simple resolution of the dual in the case where there are multiple
conic constraints.

Lagrangian Relaxation for Non-Convex NLPs

We now consider a non-convex nonlinear program of the form:

v = inf
x∈Ed

f0(x) (340)

s.t. fi(x) ≤ 0, i = 1, ..., k (341)

gj(x) = 0, j = 1, ...,m (342)

The Lagrangian and dual function are defined according to the standard defini-
tions as:

L(x, λ, µ) = f(x) +

k∑
j=1

λjfj(x) +

m∑
j=1

µjgj(x) (343)

ν(λ, µ) = inf
x∈dom(f0)∩...∩dom(gm)

L(x, λ, µ) (344)

So, for each fixed x, we observe that L(x, λ, µ) is affine in λ, µ. Since the
pointwise minimum of a set of affine functions is concave (i.e. the negative of
the function is convex), we conclude that ν(λ, µ) is concave. This implies that
the Lagrange dual problem, which is the maximization of a concave problem, is
a convex optimization problem.
Lagrangian relaxation builds on this observation by formulating lower bounds
on the optimal value of an NLP (that may or may not be convex) via a convex
optimization problem using Lagrange duality.
Consider the following example:

v = inf
x∈R
−x2 (345)

s.t. − 1 ≤ x ≤ 1 (346)

This is not a convex NLP. We compute the optimal value of the problem as
v = −1.
The Lagrangian for this problem is:

L(x, λ1, λ2) = −x2 + λ1(−x− 1) + λ2(x− 1), λ1, λ2 ≥ 0 (347)

56

Optimizing for the dual function, we get:

ν(λ1, λ2) = −∞ (348)

Since x can be made arbitrarily small in the dual function optimization. This
implies that v∗L = −∞ - not a useful lower bound!
To make the lower bound tighter, we add the redundant constraint 1 − x2 ≥ 0
to the NLP. Our problem is now:

v = inf
x∈R
−x2 (349)

s.t. − 1 ≤ x ≤ 1, 1− x2 ≥ 0 (350)

Notice how this new constraint doesn’t impact the original constraint set -
it is already implied by the original two constraints. The Lagrangian of this
reformulated problem is:

L(x, λ1, λ2, λ3) = −x2 + λ1(−x− 1) + λ2(x− 1) + λ3(x
2 − 1) (351)

Where λ1, λ2, λ3 ≥ 0. The dual function is then computed:

ν(λ1, λ2, λ3) = inf
x∈R

L(x, λ1, λ2, λ3) (352)

= inf
x∈R
−x2 + λ1(−x− 1) + λ2(x− 1) + λ3(x

2 − 1) (353)

By noting that ν(0, 0, 1) = −1, we can check that under this dual function,
v∗L = −1. Thus, we see that this dual is actually a strong dual! This problem en-
capsulates the idea of Lagrangian relaxation - by adding redundant constraints,
we can get a tighter lower bound on the optimal value of our primal problem.

15 Lecture 15: Mixed Integer Programs I

In this lecture, we’ll introduce the concept of integer and mixed integer linear
programming. A (mixed) integer linear program (MILP/ILP) is an op-
timization problem with a linear objective and constraint, and integer and real
variables. The typical form of such a problem is:

v = inf
x∈Zd,y∈Rk

⟨c, (x, y)⟩ (354)

s.t. A(x, y) ≤ b (355)

Here, c ∈ Rd+k, A : Rd+k → Rn is a linear map and b ∈ Rn. Note that here,
we’ll only consider problems with linear objective and constraint. More general
problems with integers (even those with quadratic objectives), are typically un-
decidable.
Should we expect to be able to solve mixed integer linear programs? Let’s think
of a typical example: the Knapsack problem. This is a mixed integer linear
program that optimizes over binary variables. As the Knapsack problem can be

57

proven to be NP-Hard, we should not expect to be able to solve integer linear
programs in polynomial time.
Despite this setback, we can still reformulate integer linear programs as con-
vex optimization problems! Recall that we may equivalently formulate linear
programming problems as optimizations over the convex hull of their constraint
sets. With this in mind, we may reformulate integer linear programs as:

v = inf
z∈Rd+k

⟨c, z⟩ (356)

s.t. z ∈ conv{(x, y) ∈ Rd × Rk | A(x, y) ≤ b, x ∈ Zd} (357)

Despite this convex reformulation, due to the undecidable nature of these prob-
lems, we should not expect to be able to compute the convex hull efficiently.
Instead, we’ll aim to identify subclasses of integer linear programs that have a
constraint set whose convex hull can be described efficiently. More generally, we
can use a method called branch and bound to solve integer linear programs
that don’t have an efficient convex description.
Let’s determine which integer linear programs have an efficient convex descrip-
tion.

Theorem 7 Fundamental Theorem of Integer Programming (Meyer)
Consider a (mixed) integer linear set:

S = {(x, y) ∈ Rd × Rk |A(x, y) ≤ b, x ∈ Zd} (358)

If A ∈ Zn×(d+k) and b ∈ Zn, then conv(S) is a polyhedron, and may therefore
be described as a finite number of halfspaces.

Let’s make a few remarks about this theorem. First, notice that a finite number
of halfspaces could imply that the number of halfspaces required is exponential
in the dimension of the problem! This theorem says nothing about the NP-hard
nature of a mixed integer program.
The conclusion of this theorem does not hold if A and b do not have integer
entries. This result states that integer linear programs with integral problem
parameters are decidable, although they are still NP-hard in general.
Now, we ask the following important question: when is the convex hull of an
integer linear set with integral problem parameters a polyhedron that may be
efficiently described? We’ll answer this question for the case of “pure” integer
linear sets, rather than the more general mixed integer case.
Consider an integer set:

S = {x ∈ Rd | Ax ≤ b, x ∈ Zd} (359)

How can we reason about the existence of an efficient description of the convex
hull of S? Consider the following visualization, where we plot a polyhedral set
on top of a grid of integer vectors.

58

First, consider the polygon sketched in red. Let’s think about the integer vectors
contained in the polygon, i.e. the grid points that are contained in the polygon.
If we take the convex hull of these points, it’s clear that we get back the original
hexagon shape! However, this is not the case for the green polygon, as the
convex hull of the green polygon is not generated by its integer points.
This sketch leads us to the following definition:

Definition 22 Integral Set
A convex set G ⊂ Rd is called integral if:

G = conv(G ∩ Zd) (360)

In words, a convex set is said to be integral if it is the convex hull of the integer
points contained in the set. In particular, we’ll be interested in classifying
integral polyhedra, integral sets of the form {x | Ax ≤ b} that are defined by
A ∈ Zn×d, b ∈ Zn.
Notice that even if A ∈ Zn×d and b ∈ Zd, the set {x | Ax ≤ b} need not be an
integral polyhedron! For instance, consider the set:

{x ∈ R | 0 ≤ 2x ≤ 1} (361)

Even though this set has integral parameters, it is not an integral polyhedron,
as it is not equal to the convex hull of the integers contained inside it. This is
because the right endpoint of this set is given by 1/2.

Proposition 7 Extreme points of Integral Polyhedra
Consider a bounded polyhedron P = {x ∈ Rd|Ax ≤ b} with A ∈ Zn×d, b ∈ Zn.
P is an integral polyhedron if and only if the extreme points of P are in Zd.

59

This result follows from the convex hull of a polyhedron returning the polyhe-
dron in the case that P is bounded. Now, we state the following important
result regarding extreme points of polyhedra.

Lemma 2 Extreme Points of Polyhedra
Consider a polyhedron P = {x|Ax ≤ b} ⊂ Rd. A point x ∈ Rd is an extreme
point of P if and only if it satisfies with equality a collection of d linearly inde-
pendent inequalities of the system Ax ≤ b.

Let’s apply this lemma to the situation at hand. By this lemma, we know that
an extreme point x of an integral polyhedron P must satisfy:

Ax = b (362)

Where A ∈ Zd×d is a nonsingular (due to linear independence from the lemma)
d× d submatrix of A and b ∈ Zd is the corresponding set of entries of b. Since
A is nonsingular, we may identify x using:

x = A
−1

b (363)

Thus, if the inverse of A satisfies A
−1 ∈ Zd×d, then x ∈ Zd. How do we know if

the inverse of a matrix will have integer entries? Consider the following result.

Lemma 3 Integral Matrix Inverse
Consider a nonsingular matrix M ∈ Zd×d. If det(M) = ±1, then M−1 ∈ Zd×d.

Let’s informally discuss why this is true. For necessity, let’s proceed by contra-
diction. If detM ̸= ±1, then detM−1 = 1/ detM won’t be an integer. This
implies that M−1 is not an integer matrix, which is a contradiction. For suffi-
ciency, we may make an argument using the adjoint formula for a matrix inverse.
We now define a class of matrices whose square submatrices have integral in-
verses when they exist.

Definition 23 Unimodular Matrix
A matrix A ∈ Zn×d with d ≤ n is called unimodular if every d× d submatrix of
A has a determinant equal to 0, 1, or −1.

Notice that if A has a block with determinant 0, it won’t contain a set of linearly
independent points. Thus, by the result above, it won’t generate an extreme

60

point, as an extreme point requires d linearly independent inequalities.
Putting all of these developments together, we arrive at the following result:

Proposition 8 Classification of Integral Polyhedra
Consider a polyhedron P = {x ∈ Rd|Ax ≤ b} with A ∈ Zn×d and b ∈ Zn.
Suppose P is bounded. If A is unimodular, then P is an integral polyhedron:

P = conv(P ∩ Zd) (364)

16 Lecture 16: Mixed Integer Programs II

Last lecture, we introduced integer programming. Recall that the class of mixed
integer linear programs is of the the form:

inf
x∈Zd,y∈Rk

⟨c, (x, y)⟩ (365)

s.t A(x, y) ≤ b (366)

Let’s briefly recap our development of the geometry of integral constrain sets.
For the convex hull of the constraint set to be a polyhedron, we required that
A ∈ Zn×(d+k) and b ∈ Zn due to Meyer’s theorem.
A polyhedron P = {x ∈ Rd|Ax ≤ b} with A ∈ Zn×d, b ∈ Zn is called integral
if P = conv(Zd ∩ P). Assuming P is bounded, this corresponds to P having
integer extreme points.
We showed that if A is unimodular, then P is an integral polyhedron. Recall
that unimodularity of A ∈ Zn×d, for n ≥ d, is defined as every d× d submatrix
of A having determinant equal to 0, 1, or −1.
In this lecture, we’ll consider inequalities of polyhedra described in several dif-
ferent ways that arise commonly in applications.

Proposition 9 Integral Polyhedra (Veinott & Dantzig)
Consider a polyhedron P specified as:

P = {x ∈ Rd|Mx = b, x ≥ 0} (367)

For M ∈ Zk×d and b ∈ Zk with k < d. Suppose that P is also bounded. If
M∗ ∈ Zd×k is unimodular and of rank k, then P is integral for all b ∈ Zk.

Before we prove this statement, note that its converse is also true! We simply
won’t state or prove it here. Let’s now prove the proposition stated above.

61

Proof: First, we rewrite the set P . An equivalent description of P is:

P =

{
x ∈ Rd

∣∣∣∣∣
 M
−M
−I

x ≤

 b
−b
0

}
(368)

Here, the block matrix on the left hand side is in R(2k+d)×d and the vector on
the right hand side is in R2k+d.
We know that any extreme point x ∈ Rd of P satisfies a system of the form:

Ax = b (369)

For A ∈ Zd×d a nonsingular submatrix of: M
−M
−I

 (370)

And b ∈ Zd the corresponding sub-vector of: b
−b
0

 (371)

What structure does A have? We know A may be broken down as follows:

A =

 k rows of

[
M
−M

]
d− k rows of − I

 (372)

Let’s use this structure to evaluate the determinant of A. The determinant of A
is equivalent to the determinant of a k×k submatrix of the k rows of (M ;−M),
as when we take the determinant of A, the identity matrix “drops out” via
cofactor expansion.
This k × k block matrix will look something like:

±
±
±

 M

 (373)

Where each row is either a row of M or its negation. Each row in this submatrix
is linearly independent. By this representation above, we see that taking the
determinant of a submatrix is the same as taking the determinant of a submatrix
of M up to a sign change.
So, if A has this structure, then the determinant of A is the the same as the
determinant of a k × k submatrix of M (up to sign). Therefore, det(A) = ±1,
as M∗ is unimodular.
As every extreme point of P must satisfy the equations Mx = b, we have that
A must have the preceding form, which implies every x must be integral. Thus,
the analysis above is sufficient for all cases. □

62

Definition 24 Totally Unimodular Matrix
A matrix M ∈ Zp×q is called totally unimodular if every square submatrix of M
has determinant 0, 1, or −1.

Note that this differs from a unimodular matrix in that we no longer restrict
the dimension of our square submatrix - now, we consider all possible square
submatrices. This means that all entries of a totally unimodular matrix must
have value 0, 1, or −1, as each entry of a matrix is a 1× 1 submatrix.
On the other hand, unimodular matrices may have values outside the set {0, 1,−1}.
For instance, consider: [

2 1
1 1

]
(374)

This matrix is unimodular despite having an entry equal to two. Let’s see how
we can augment the proposition above using the concept of a totally unimodular
matrix.

Proposition 10 Integral Polyhedra (Hoffman & Kruskal)
Consider a polyhedron P specified as:

P = {x ∈ Rd|Mx ≤ b, x ≥ 0} (375)

Here, M ∈ {0, 1,−1}n×d and b ∈ Zd. Suppose P is bounded. If M is totally
unimodular, then P is integral for all b ∈ Zn.

Note that as with the proposition above, the converse of this result is also true,
but we won’t state or prove it here.

Proof: We can reformulate the polyhedron P as:

P =
{
x ∈ Rd

∣∣∣ [M−I
]
x ≤

[
b
0

]}
(376)

Where the matrix on the left hand side is in R(d+n)×d. Any d× d submatrix of
this matrix has determinant equal to that of an l× l submatrix of M for l ≤ d.
As M is totally unimodular, this submatrix has a determinant of 0, 1, or −1. □

Let’s sketch out a second proof of this proposition that relies on the Veinott-
Dantzig result stated above.

63

Proof Sketch: We can express P as the projection of the following polyhedron:{[
x
y

]
∈ Rd+n

∣∣∣Mx+ y = b,

[
x
y

]
≥ 0

}
(377)

Here, we have used a slack variable, y, to rewrite the inequality constraint in
the original definition of P as an equality constraint.
Now, we may appeal to the Veinott-Dantzig result and the assumption that M
is totally unimodular to show that this “lifted” polyhedron is integral.
Finally, the elimination of the slack variable y by projection yields an integral
polyhedron. □

17 Lecture 17: Numerical Methods I

This section was adapted from Yiheng Xie’s notes. Thanks Yiheng!
Thus far in the course, we’ve been focused largely on developing the theory of
convex optimization problems rather than the actual solution procedures. In
this lecture, we discuss the basics of some numerical methods used to solve
convex optimization problems.
Recall that the general formulation of a convex optimization problem is:

v = inf
x∈Ed

f(x) s.t. x ∈ S (378)

Where f : Ed → R is a convex function and S ⊆ Ed is a convex set.
Let’s state a few assumptions about this convex optimization problem that we’ll
use to develop numerical solution procedures. First, we assume that we have
access to the two attributes defined below:

Definition 25 Subgradient Oracle
Given any x ∈ int(dom(f)), the subgradient oracle returns g ∈ ∂f(x).

We can think of the subgradient oracle as “sampling” a subgradient from the
subdifferential of the function f . Since f is convex, the subgradient oracle
provides us with a global underestimate of the value of f at the point x.

Definition 26 Projection Oracle
Consider a closed, convex set S ⊆ Ed. Let PS(x) be the operator that projects
x ∈ Ed onto S. The projection oracle takes in x ∈ Ed and returns PS(x).

64

Recall from earlier in the course that PS(x), the projection of x onto S, is the
unique solution to the optimization problem:

inf
z∈S
||x− z||2 (379)

In order for this projection to be well-defined, we require that the convex set S
is closed. If we didn’t have this requirement, the boundary ∂S of the set may
not be entirely contained in S. This would lead to ill-posed projections.
Notice that PS also gives us a way to identify membership of an arbitrary x ∈ S
in S, as x = PS(x) if and only if x ∈ S.
Assuming that we have access to the subgradient and projection oracles for our
given convex optimization problem, we may employ a numerical method called
the projected subgradient method, which we now define.

Definition 27 Projected Subgradient Method
Let x(k) denote an estimate of the optimal solution to a convex optimization
problem at a time step k ∈ Z+. The projected subgradient method update rule
is defined:

x(k+1) = PS(x
(k) − ηkg

(k)) (380)

Where g(k) ∈ ∂f(x(k)) and ηk is the step size.

Notice that the projected subgradient method is not a “descent” method! For
instance, consider the optimization problem:

v = inf
x∈R
|x| (381)

At the value x(k) = 0, the subgradient method would send x(k+1) away from
the optimal value, different to what a descent method would do.
Under what conditions will the projected subgradient method converge? Con-
sider the following theorem.

Theorem 8 Projected Subgradient Convergence
Consider a convex optimization problem:

v = inf
x∈Ed

f(x) s.t. x ∈ S (382)

Where f : Ed → R is a convex function and S ⊆ int(dom(f)) is a closed convex
set. Further, suppose ||g|| ≤ L for all g ∈ ∂f(x) and all x ∈ S.

65

If x∗ is the optimal solution of the optimization problem, the iterates of the
projected subgradient method with step size ηk ≥ 0 satisfy:

min
k∈0,...,T

f(x(k))− v ≤
||x(0) − x∗||2 + L2

∑T
k=0 η

2
k

2
∑T

k=0 ηt
(383)

Before we prove this theorem, we make several notes about its structure. First,
note that we simply use f(x(k)) − v instead of |f(x(k)) − v|, since v gives the
global minimum of the function and f(x) ≥ v ∀x ∈ S. This allows us to drop
the absolute value.
Next, let’s discuss the conditions under which convergence is guaranteed. Based
on the theorem, we see that one way to guarantee convergence is to choose ηk
such that

∑T
k=0 η

2
k is finite and

∑T
k=0 ηk →∞ as T →∞. This will guarantee

that f(x(k)) approaches v by the inequality provided above. A choice ηk = 1/k
is one example of a sequence that gives this behavior.
Notice that this is a very general method with very few assumptions. Outside
of the general convex optimization setup, we’ve assumed a closed constraint set
S and that all subgradients are bounded for all x ∈ S. The generality of this
approach comes with the drawback that this method has a relatively slow rate
of convergence.
Let’s now turn our attention back to proving the theorem above. First, we
introduce the following lemma:

Lemma 4 Projections are Contractive
Let S ⊂ Ed be a closed, convex set. Then, the projection map PS onto the
convex set is contractive. That is:

||PS(x)− PS(y)|| ≤ ||x− y|| ∀x, y ∈ Ed (384)

Now, we return to the proof of the convergence theorem.

Proof (Convergence Theorem): We begin by expanding the squared norm
||x(T+1) − x∗||2. Using the definition of the projected subgradient method, we
substitute for x(T+1) as follows:

||x(T+1) − x∗||2 = ||PS(x
(T) − ηT g

(T))− x∗||2 (385)

= ||PS(x
(T) − ηT g

(T) − PS(x
∗)||2 (386)

Where we use the fact that x∗ ∈ S to conclude that P (x∗) = x∗. Now, using
the contractive property of projections, we conclude:

||x(T+1) − x∗||2 ≤ ||x(T) − ηT g
(T) − x∗||2 (387)

66

Now, we expand the squared norm and apply the definition of the subgradient
to form another inequality.

||x(T) − ηT g
(T) − x∗||2 (388)

= ||x(T) − x∗||2 + η2T ||g(T)||2 − 2ηT ⟨g(T), x(T) − x∗⟩ (389)

≤ ||x(T) − x∗||2 + η2T ||g(T)||2 − 2ηT (f(x
(T))− f(x∗)) (390)

≤ ||x(T) − x∗||2 + η2TL
2 − 2ηT (f(x

(T))− f(x∗)) (391)

Where in the last step, we use that ||g|| ≤ L ∀g ∈ ∂f(x). Next, we use the def-
inition of the projected subgradient method to expand the first squared norm
recursively until we work our way back to x(0). This yields the following in-
equality:

||x(T) − x∗||2 + η2TL
2 − 2ηT (f(x

(T))− f(x∗)) (392)

≤ ||x(0) − x∗||2 + L2
T∑

k=0

η2k − 2

T∑
k=0

ηk(f(x
(k))− f(x∗)) (393)

Putting all of these inequalities together, we therefore have:

0 ≤ ||x(T+1) − x∗||2 (394)

≤ ||x(0) − x∗||2 + L2
T∑

k=0

η2k − 2

T∑
k=0

ηk(f(x
(k))− f(x∗)) (395)

Bringing the negative term to the left hand side of the first inequality, we then
get:

2

T∑
k=0

ηk(f(x
(k))− f(x∗)) ≤ ||x(0) − x∗||2 + L2

T∑
k=0

η2k (396)

2

T∑
k=0

ηk

(
min

k=∈0,...,T
f(x(k))− f(x∗)

)
≤ ||x(0) − x∗||2 + L2

T∑
k=0

η2k (397)

Dividing both sides by 2
∑T

k=0 ηk, we arrive at the statement of the theorem. □

As we discussed above, choosing ηk such that
∑T

k=0 η
2
k is finite and

∑T
k=0 η

2
k →

∞ as T → ∞ yields convergence. Although this choice is sufficient for conver-
gence, it’s important to note that it is not necessary. The “best” choice of ηk is
choosing ηk ∝ 1/

√
k. This choice of step size can be shown to give the following

relationship:

||x(0) − x∗||2 + L2
∑T

k=0 η
2
k

2
∑T

k=0 ηt
∝ ||x

(0) − x∗||2 + L2 log(T)√
T

(398)

If we recall that this fraction bounds the error between the iterative estimate of
the optimal value and the true optimal value, we arrive at the following corollary
of the theorem above:

67

Corollary 1 ϵ-Accurate Solutions with Projected Subgradient
To obtain an ϵ-accurate solution of a convex optimization problem using the
projected subgradient method, one may choose T according to the rule:

T ∝ 1

ϵ2
(399)

18 Lecture 18: Numerical Methods II

Last lecture, we discussed the projected subgradient method, which provided
a very general framework for numerically solving constrained convex optimiza-
tion problems. In this lecture, we’ll focus on numerical methods for the uncon-
strained minimization of differentiable convex functions. Our focus will therefore
be on the following optimization problem:

v = inf
x∈Ed

f(x) (400)

Where f : Ed → R is a differentiable convex function.
First, we’ll discuss a numerical optimization technique called the method of
steepest descent. This method involves finding the minimum of a function by
following the function’s direction of “steepest descent,” a vector which depends
on the gradient of the function and the geometry of a norm on Ed.
To define the direction of steepest descent of a function f at a point x ∈ Ed,
we’ll first need a vector called the normalized steepest descent. Fix a norm
|| · || on Ed. The normalized steepest descent of f at a point x ∈ Ed is defined:

unsd = arg min{⟨∇f(x), v⟩ | ||v|| ≤ 1} (401)

Where “arg min” refers to the argument v that minimizes the quantity ⟨∇f(x), v⟩
over the search space ||v|| ≤ 1. The normalized steepest descent is the vector
pointing in the “steepest downwards direction” of f at a point x ∈ Ed.
We then define steepest descent of f at x ∈ Ed as the vector:

u = ||∇f(x)||∗unsd (402)

Where || · ||∗ denotes the dual norm associated with || · ||.
Using these two vectors, we define the method of steepest descent as follows.

Definition 28 Method of Steepest Descent
Let || · || be a fixed norm on Ed and f : Ed → R a differentiable convex function.
The method of steepest descent proceeds according to the update rule:

x(k+1) = x(k) + sku
(k) (403)

68

Where u(k) is defined as:

u(k) = ||∇f(x(k))||∗u(k)
nsd (404)

For u
(k)
nsd the normalized steepest descent:

u
(k)
nsd = arg min{⟨∇f(x(k), v⟩ | ||v|| ≤ 1} (405)

Let’s discuss some details of the setup of the method of steepest descent. First,
we ask the question: why use the dual norm? When looking at the inner
product:

⟨∇f(x(k)), v⟩ (406)

The vector v lives in the vector space Ed, while the other lives in the dual space
associated with Ed. The representation of the inner product written above is
actually an identification of the corresponding element of the dual space as a
vector in Ed. Thus, to be precise, we use the dual norm, ||∇f(x(k)||∗ when
determining the direction of steepest descent.
Let’s consider some examples of computing the direction of steepest descent u(k)

under a few different norms.

1. || · || is the norm induced by the inner product:

||w|| =
√
⟨w,w⟩ (407)

In this case, || · ||∗ = || · ||, which means that the direction of steepest
descent is given by:

u(k) = −∇f(x(k)) (408)

Thus, for this norm, the method of steepest descent specializes to gradi-
ent descent.

2. || · || is the norm defined by:

||w|| =
√
⟨w,Pw⟩ (409)

For P ≻ 0. In this case, the dual norm becomes:

||w||∗ =
√
⟨w,P−1w⟩ (410)

The steepest descent is then given by:

u(k) = −P−1∇f(x(k)) (411)

69

3. || · || is the l1 norm, and Ed = Rd. Recall that the l1 norm on Rd is defined:

||w||l1 =

d∑
i=1

|wi| (412)

In this case, the dual norm is given by:

||w||∗ = ||w||l∞ = max
i∈1,...,d

|wi| (413)

How do we compute the steepest descent direction in this case? Let j ∈
{1, ..., d} be the coordinate at which ∇f(x(k)) has the largest magnitude.
Then, we have that:

u(k) = −[∇f(x(k)]j · e(j) (414)

Where e(j) is the j’th standard basis vector on Rd. This specialization
of steepest descent is called coordinate descent, and is commonly used
in large scale optimization problems where we only wish to update a few
components of x(k) at a time.

Now that we’ve discussed the basic setup of the method of steepest descent and
methods for computing the direction of steepest descent, we must consider the
choice of step size. We’ll discuss two methods for defining step size, the first of
which is defined below:

Definition 29 Exact Linesearch
The exact linesearch method solves the following 1-D optimization problem to
identify the stepsize sk:

sk = arg min {f(x(k) + su(k))|s ≥ 0} (415)

Based on the definition, we observe that the exact linesearch method of deter-
mining stepsize chooses a stepsize sk that that minimizes f in the direction of
steepest descent starting from the current iterate x(k). Note that s ≥ 0 since
the “sign” of the direction we wish to move in has already been chosen by the
direction of steepest descent u(k).
The exact linesearch method is the “best” thing we can do at a given point x(k),
as it finds the largest step we can make towards the minimum of the function.
However, since it computes sk exactly, it can be computationally expensive.
As a less computationally expensive alternative, consider the backtracking line-
search, defined as follows:

70

Definition 30 Backtracking Linesearch
Fix a number β ∈ (0, 1) and a positive initial guess for s. Then, execute the
following algorithm to identify sk:

1. While f(x(k) + su(k)) ≥ f(x(k)):

s← βs (416)

2. Set sk = s.

Starting from an initial guess, the backtracking linesearch looks for a smaller
and smaller stepsize until a stepsize is found that yields a smaller value of f .
This is the stepsize that is then defined to be sk. Note that the initial guess for
the stepsize is not of high importance, as the typical step size is small. 1 is a
common initial guess for s.
Now that we’ve defined all of the components of the method of steepest de-
scent, we may determine the conditions under which it converges. To state this
theorem, we first state the following definition for strong convexity:

Definition 31 Strong Convexity
A function f : Ed → R is strongly convex if there exists a µ > 0 such that;

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

2
µ ⟨y − x, y − x⟩ ∀x, y ∈ Ed (417)

Thus, a function is strongly convex if it is above a quadratic approximation of
it at all points. We now state an informal theorem regarding the convergence
of steepest descent.

Theorem 9 Convergence of Steepest Descent (Informal)
Let f : Ed → R be a differentiable function such that:

1. f is strongly convex.

2. f has Lipschitz gradients.

For any choice of norm and either exact or backtracking linesearch for step size,
the iterates of steepest descent satisfy:

f(x(k))− v ≤ ck(f (k) − v) (418)

71

For some c ∈ (0, 1) that depends on the strong convexity parameter µ and the
Lipschitz constant for the gradients.

Let’s make a couple of comments about this theorem. First, note that as with
projected gradient descent, we simply use f(x(k)) − v instead of |f(x(k)) − v|,
since v gives the global minimum of the function and f(x) ≥ v ∀x ∈ Ed.
Secondly, we make a brief note about the criterion for ϵ-accurate solutions. Us-
ing the method of steepest descent, we need O(log(1/ϵ)) iterations to obtain an
ϵ-accurate solution. This type of convergence behavior is called linear conver-
gence, where “linear” refers to some of the terms that appear in the proof of
convergence.
Let’s summarize what the method of steepest descent gives us. Using relatively
minimal computation, the method of steepest descent allows us to find the min-
imum of a function using the functions first order information. What if we
were to use higher order information (e.g. second derivatives) of the function?
Could we use this information to reduce the number of iterations needed for an
ϵ-accurate solution?
Newton’s method is a numerical algorithm that uses a function’s second
derivative to obtain ϵ-accurate solutions to unconstrained minimization prob-
lems in fewer iterations than the method of steepest descent.

Definition 32 Newton’s Method
Let f : Ed → R be a convex, twice differentiable function. The iterates of
Newton’s method are given by:

x(k+1) = x(k) + sku
(k) (419)

Where s(k) > 0 and:

u(k) = −[∇2f(x(k))]−1∇f(x(k)) (420)

Based on the definition of Newton’s method, we notice that there are a few extra
assumptions we require to apply Newton’s method compared to the method of
steepest descent. First, we assume that f is twice differentiable instead of once.
Secondly, we require that the Hessian of f , ∇2f(x(k)), is invertible. Since the
Hessian of a convex function is always at least PSD, we will require that the
Hessian is PD in order to gain access to the inverse. Conveniently, if f is strongly
convex, its Hessian will be positive definite. As such, we’ll make the assumption
of strong convexity when applying Newton’s method.
What other differences are there compared to steepest descent? Newton’s
method is not a steepest descent method - there is no norm we can fix to

72

recover the method of steepest descent from Newton’s method. Despite this, we
can still interpret Newton’s method using steepest descent!
Newton’s method may be compared to a steepest method with a norm associ-
ated with iteration k given by:

||w|| =
√
⟨w,∇2f(x(k))w⟩ (421)

This may be derived by looking at the direction of steepest descent under a
norm defined by ||w|| = ⟨w,Pw⟩ , P ≻ 0. Since this norm is not fixed, and
changes with every k, Newton’s method is not a steepest descent method.
At each iteration k, the method of steepest descent will minimize:

f(x(k)) + ⟨∇f(x(k)), u⟩+ 1

2
⟨u, u⟩ (422)

While Newton’s method will minimize:

f(x(k)) + ⟨∇f(x(k)), u⟩+ 1

2
⟨u,∇2f(x(k)u⟩ (423)

So, Newton’s method tries to minimize a true quadratic approximation of the
function f , while steepest descent instead minimizes a “cheap” quadratic ap-
proximation that doesn’t actually use second order information.
What other properties does Newton’s method have? Newton’s method has the
important property that it is affinely invariant. This means that minimizing
g(x) = f(Mx) using Newton’s method for a non-singular linear map M yields
iterates that are transformed by M . This is not a property shared by steepest
descent!
Let’s informally discuss the convergence properties of Newton’s method.

Theorem 10 Convergence of Newton’s Method (Informal)
Let f : Ed → R be a twice-differentiable strongly convex function with Lipschitz
Hessians. With either exact or backtracking linesearch for step size, Newton’s
method requires:

f(x(0))− v

γ
+O(log log 1/ϵ) (424)

Iterations to converge to an ϵ-accurate solution.

Notice that the term on the left is simply a constant that depends on the initial
condition x0 and the optimal value v. The term on the right, log log ϵ, is a very
small number relative to 1/ϵ. Such convergence is called quadratic conver-
gence.
Compared to steepest descent, Newton’s method converges in fewer iterations
but at the cost of more computationally expensive iterations. Especially for
higher dimensional problems, where a large Hessian needs to be inverted, New-
ton’s method can become prohibitively slow.

73

	Lecture 1: Introduction to Optimization
	Lecture 2: Certifying Optimality
	Lecture 3: Convex Sets and Hyperplanes
	Lecture 4: Convex Functions
	Lecture 5: Fenchel Duality I
	Lecture 6: Fenchel Duality II
	Lecture 7: Describing Convex Sets
	Lecture 8: Cone Programming
	Lecture 9: Conic Duality
	Lecture 10: Linear & Semidefinite Programs
	Lecture 11: Lagrange Duality I
	Lecture 12: Lagrange Duality II
	Lecture 13: Optimality Conditions for NLPs
	Lecture 14: Lagrangian Relaxation
	Lecture 15: Mixed Integer Programs I
	Lecture 16: Mixed Integer Programs II
	Lecture 17: Numerical Methods I
	Lecture 18: Numerical Methods II

